W681308DG [NUVOTEM TALEMA]

W681308 USB Audio Controller from Nuvoton integrates fast 8051 Microcontroller Unit (MCU); W681308 USB音频控制器由新唐集成了高速8051微控制器单元(MCU )
W681308DG
型号: W681308DG
厂家: NUVOTEM TALEMA    NUVOTEM TALEMA
描述:

W681308 USB Audio Controller from Nuvoton integrates fast 8051 Microcontroller Unit (MCU)
W681308 USB音频控制器由新唐集成了高速8051微控制器单元(MCU )

微控制器
文件: 总64页 (文件大小:981K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W681308  
W681308  
USB AUDIO CONTROLLER  
Data Sheet  
Revision 1.2  
W681308  
TABLE OF CONTENT  
1.  
2.  
3.  
4.  
5.  
6.  
GENERAL DESCRIPTION ............................................................................................................................................... 6  
FEATURES....................................................................................................................................................................... 6  
PIN CONFIGURATION..................................................................................................................................................... 8  
PIN DESCRIPTION .......................................................................................................................................................... 9  
BLOCK DIAGRAM.......................................................................................................................................................... 11  
MEMORY MAP............................................................................................................................................................... 12  
6.1  
6.2  
PROGRAM MEMORY MAP ........................................................................................................................................... 12  
DATA MEMORY MAP .................................................................................................................................................. 12  
7.  
REGISTERS................................................................................................................................................................... 13  
7.1  
MCU CLOCK RATE SELECT REGISTER ....................................................................................................................... 13  
INTERRUPT CONTROL REGISTERS .............................................................................................................................. 13  
KEYPAD IO, LCD, UART AND GPIO CONTROL REGISTERS ......................................................................................... 13  
GAIN STAGE AND MIXER CONTROL REGISTERS............................................................................................................ 14  
PCM CONTROL REGISTERS....................................................................................................................................... 14  
CODEC CONTROL REGISTERS.................................................................................................................................. 14  
SPI CONTROL REGISTERS......................................................................................................................................... 15  
W2S CONTROL REGISTERS....................................................................................................................................... 15  
RING TONE (PWM) CONTROL REGISTERS .................................................................................................................. 16  
FULL/HALF DUPLEX ACOUSTIC ECHO CANCELLATION (AEC) CONTROL REGISTERS ........................................................ 16  
USB CONTROLLER REGISTERS.................................................................................................................................. 18  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
8.  
MICROCONTROLLER ................................................................................................................................................... 21  
8.1  
8.2  
FEATURES................................................................................................................................................................ 21  
MEMORY ORGANIZATION ........................................................................................................................................... 21  
8.2.1 Program Memory............................................................................................................................................... 21  
8.2.2 Data Memory..................................................................................................................................................... 21  
8.2.3 Special Function Registers (SFR) ..................................................................................................................... 22  
8.3  
8.4  
POWER MANAGEMENT............................................................................................................................................... 22  
RESET CONDITIONS .................................................................................................................................................. 23  
8.4.1 External Reset................................................................................................................................................... 23  
8.4.2 Watchdog Reset................................................................................................................................................ 23  
8.5  
8.6  
INTERRUPTS............................................................................................................................................................. 23  
PROGRAMMING TIMERS AND COUNTERS ..................................................................................................................... 24  
8.6.1 Timers/Counters 0 and 1 ................................................................................................................................... 24  
8.6.2 Timer/Counter 2................................................................................................................................................. 25  
2
Rev1.2  
W681308  
8.6.3 Watchdog Timer ................................................................................................................................................ 25  
8.7  
8.8  
SERIAL PORT (UART)............................................................................................................................................... 28  
OTP ROM .............................................................................................................................................................. 28  
9.  
CLOCK CONTROL AND RESET ................................................................................................................................... 29  
9.1  
CLOCK CONTROL...................................................................................................................................................... 29  
9.1.1 Overview............................................................................................................................................................ 29  
9.1.2 Clock Generation............................................................................................................................................... 29  
9.1.3 Control Register................................................................................................................................................. 30  
INTERRUPT CONTROL ............................................................................................................................................ 31  
10.  
10.1  
10.2  
10.3  
11.  
OVERVIEW ............................................................................................................................................................... 31  
FUNCTIONALITY ........................................................................................................................................................ 31  
INTERRUPT CONTROL REGISTERS .............................................................................................................................. 32  
INTERFACE LOGIC................................................................................................................................................... 33  
SOFTWARE KEYPAD SCANNER ................................................................................................................................... 33  
GPIO S ................................................................................................................................................................... 34  
LCD CONTROL......................................................................................................................................................... 35  
UART I/O CONTROL................................................................................................................................................. 35  
PCM INTERFACE , GAIN STAGE AND MIXER ........................................................................................................ 36  
PCM INTERFACE ...................................................................................................................................................... 36  
GAIN STAGE ............................................................................................................................................................. 36  
MIXER ..................................................................................................................................................................... 37  
CONNECTION CASE EXAMPLE .................................................................................................................................... 37  
MIXER CASE EXAMPLES WITH REGISTER SETTING ....................................................................................................... 39  
I2S REGISTER SETTING EXAMPLE .............................................................................................................................. 42  
AUDIO CODEC INTERFACE..................................................................................................................................... 43  
OVERVIEW ............................................................................................................................................................... 43  
AUDIO CODEC SIGNAL PATH.................................................................................................................................... 43  
MICROPHONE INTERFACE AND AUXILIARY INTERFACE ................................................................................................... 44  
SERIAL PERIPHERAL INTERFACE.......................................................................................................................... 47  
OVERVIEW ............................................................................................................................................................... 47  
DATA AND SIGNAL FORMAT OF SPI............................................................................................................................ 47  
FSM OF SPI ............................................................................................................................................................ 47  
FIFO AND RAM OF SPI ............................................................................................................................................ 48  
INTERRUPT SOURCES................................................................................................................................................ 48  
NUVOTON 2-WIRE SERIAL BUS.............................................................................................................................. 49  
11.1  
11.2  
11.3  
11.4  
12.  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
13.  
13.1  
13.2  
13.3  
14.  
14.1  
14.2  
14.3  
14.4  
14.5  
15.  
3
Rev1.2  
W681308  
15.1  
16.  
OVERVIEW ............................................................................................................................................................... 49  
ICE FUNCTION BY JTAG STD. IEEE 1149.1............................................................................................................ 49  
OVERVIEW ............................................................................................................................................................... 49  
SCAN CHAINS AND JTAG INTERFACE.......................................................................................................................... 49  
PIN DESCRIPTION ..................................................................................................................................................... 49  
RESET BEHAVIOR ..................................................................................................................................................... 50  
RING TONE (PWM) GENERATOR............................................................................................................................ 50  
OVERVIEW ............................................................................................................................................................... 50  
FULL/HALF DUPLEX ACOUSTIC ECHO CANCELLATION(AEC) ............................................................................ 51  
FUNCTION CONTROL REGISTERS................................................................................................................................ 51  
USB DEVICE CONTROLLER AND TRANSCEIVER ................................................................................................. 52  
OVERVIEW ............................................................................................................................................................... 52  
FUNCTIONAL DESCRIPTION ........................................................................................................................................ 52  
16.1  
16.2  
16.3  
16.4  
17.  
17.1  
18.  
18.1  
19.  
19.1  
19.2  
19.2.1  
19.2.2  
Endpoints ...................................................................................................................................................... 53  
Descriptor RAM............................................................................................................................................. 54  
20.  
ELECTRICAL CHARACTERISTICS .......................................................................................................................... 55  
ABSOLUTE MAXIMUM RATINGS................................................................................................................................... 55  
RECOMMENDED OPERATING CONDITIONS ................................................................................................................... 55  
DC CHARACTERISTICS .............................................................................................................................................. 56  
ANALOG TRANSMISSION CHARACTERISTICS................................................................................................................. 56  
ANALOG DISTORTION AND NOISE PARAMETERS ........................................................................................................... 57  
20.1  
20.2  
20.3  
20.4  
20.5  
20.5.1  
20.5.2  
20.5.3  
8kHz sampling............................................................................................................................................... 57  
16kHz sampling............................................................................................................................................. 57  
48kHz sampling............................................................................................................................................. 58  
20.6  
20.7  
20.8  
PROGRAMMABLE OUTPUT LINEAR REGULATOR............................................................................................................ 58  
USB PHY ELECTRONIC CHARACTERISTICS ( 25°C, DVDD= 3.3V, VDDL =1.8V) ......................................................... 59  
USB PLL ELECTRONIC CHARACTERISTICS.................................................................................................................. 60  
TYPICAL APPLICATION REFERENCE CIRCUIT ..................................................................................................... 61  
USB VOIP SPEAKER PHONE APPLICATION ................................................................................................................... 61  
PACKAGE DIMENSIONS .......................................................................................................................................... 62  
ORDERING INFORMATION...................................................................................................................................... 63  
REVISION HISTORY ................................................................................................................................................. 64  
21.  
21.1  
22.  
23.  
24.  
4
Rev1.2  
W681308  
LIST OF TABLES  
Table 1 Pin Description .......................................................................................................................................................... 10  
Table 2 W681308 MCU SFR location..................................................................................................................................... 22  
Table 3 Interrupt Priority Structure.......................................................................................................................................... 23  
Table 4 Timer Mode/Control TMOD/TCON SFR .................................................................................................................... 24  
Table 5 Timer 2 Mode/Control TMOD/TCON SFR ................................................................................................................. 25  
Table 6 Time-Out Values For Watchdog Timer...................................................................................................................... 26  
Table 7 Watchdog Control WDCON SFR............................................................................................................................... 26  
Table 8 Watchdog Control Bits............................................................................................................................................... 27  
Table 9 Watchdog Timer Timeout Control.............................................................................................................................. 27  
Table 10 Serial Control SCON SFR ....................................................................................................................................... 28  
Table 11 JTAG Pin Description .............................................................................................................................................. 49  
Table 12 W681308 USB Endpoint Definitions........................................................................................................................ 53  
Table 13 USB Descriptor RAM Definitions ............................................................................................................................. 54  
LIST OF FIGURES  
Figure 1 Pin diagram ................................................................................................................................................................ 8  
Figure 2 W681308 Function Block Diagram........................................................................................................................... 11  
Figure 3 Interrupt Structure .................................................................................................................................................... 31  
Figure 4 Keypad Scanning Application Circuit........................................................................................................................ 33  
Figure 5 PCM Interface, Gain Stage and Mixer Location ....................................................................................................... 36  
Figure 6 Mixer Connection Case Examples ........................................................................................................................... 37  
Figure 7 Mixer Examples with Registers Setting .................................................................................................................... 39  
Figure 8 W681308 CODEC Signal Path Control .................................................................................................................... 43  
Figure 9 Microphone Voltage Gain Mode............................................................................................................................... 45  
Figure 10 Microphone Current Gain Mode ............................................................................................................................. 45  
Figure 11 Microphone Auxiliary Input Mode ........................................................................................................................... 46  
Figure 12 SPI Block Diagram ................................................................................................................................................. 47  
Figure 13 Ring Tone Generator Block.................................................................................................................................... 50  
Figure 14 Signal flow through Acoustic Echo Cancellation in the speech processor.............................................................. 51  
Figure 15 USB Function Block Diagram................................................................................................................................. 52  
Figure 16 W681308 Reference Design Application Circuit..................................................................................................... 61  
5
Rev1.2  
W681308  
1.  
General Description  
W681308 USB Audio Controller from Nuvoton integrates fast 8051 Microcontroller Unit (MCU), Universal Serial Bus (USB)  
2.0 Full Speed compliant controller with PHY, 16bit high quality Analog to Digital Converter / Digital to Analog Converter  
(ADC/DAC) with 8/16/48 KHz wide band sampling rates, speaker phone and echo cancellation, 8 KB One Time  
Programmable (OTP) program memory and 1 KB data memory in a single 48 pin Low-profile Quad Flat Package (LQFP).  
MCU includes Joint Test Access Group (JTAG) In-Circuit Emulation(ICE) interface and can handle customer programs such  
as keypad scan, LCD control, caller list download, and USB and CODEC control among other features. W681308 provides  
highest integration and low BOM cost solution with 8051-based development platform for USB Audio peripherals and USB  
VoIP devices such as Skype® , other IM and SIP-based application.  
With Nuvoton’s market proven CODEC product experience, W681308 is designed to provide high audio quality in VoIP and  
audio devices applications and deliver USB Audio/VoIP solution with the shortest time to market, time to volume and time to  
profit  
2.  
Features  
8 Bit Turbo MCU  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Embedded 12/24/48 MHz Turbo 8051 MCU with 4 Clocks per machine Cycle  
1 KB system RAM, 8 KB OTP ROM  
256 byte internal RAM (8051)  
Power on Reset circuit  
Software Idle mode  
In Circuit Emulation (ICE) through JTAG Interface  
High Quality 16 bit Mono Audio Linear CODEC  
ƒ
Built-in 8/16/48 KHz sampling rate wideband mono audio CODEC and true 16-bit resolution ADC/DAC with internal 24-bit audio  
processing for both record and playback  
ƒ
ƒ
Analog microphone(MIC) amplifier and speaker driver with internal programmable gain stage  
82 dB Receive SNR @ 8 Ohm load  
USB 2.0 Full speed (FS) Interface with integrated PHY  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
USB 2.0 FS compliant device controller and PHY with 12 Mbps communication speed  
Support 6 USB endpoints configuration: Control, ISO IN/OUT, Bulk IN/OUT and Interrupt IN  
512-Byte RAM-based USB descriptor for multiple USB device support through 8051 MCU  
Less than 500uA supply current in suspend mode  
Fully integrated cap-less microphone amplifier with microphone bias  
Dual earphone / speaker driver and buzzer  
Integrated DAC switch for earphone or speaker phone  
Integrated Acoustic Echo Cancellation (AEC)  
ƒ
ƒ
Support both half-duplex AEC and 32ms full duplex AEC  
Built-in digital Auto Gain Control (AGC) with microphone input for speaker phone application  
Integrated keypad control pins and GPIO  
ƒ
ƒ
ƒ
ƒ
ƒ
Suitable for VoIP application  
Volume up and down  
Dial / hang up  
Microphone and speaker phone mute  
LED indicators  
6
Rev1.2  
 
W681308  
ƒ
ƒ
ƒ
ƒ
Number pad control  
User programmable keys  
Keypad scanning  
LCD Module interface control  
UART  
ƒ
Programmable UART port for serial data application  
PCM Interface  
ƒ
Master linear PCM interface to external PCM device such as Nuvoton’s ProX CODEC/SLIC  
SPI interface  
ƒ
ƒ
Works in master mode to control Liquid Crystal Display (LCD) Module or other SPI slave devices  
Support Winbond serial flash device with SPI interface  
W2S 2 Wire interface  
ƒ
Support 2 wire interface for EEPROM three format page modes  
USB 5V voltage supply  
ƒ
ƒ
Built-in linear regulator on chip supports 3.3V to 1.8V conversion for digital core power  
USB 5V to 3.3V supply power using external transistors  
Package  
ƒ
48-pin LQFP package 7mmx7mmx1mm  
Application  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
USB audio peripheral box/ USB sound card  
USB microphone / USB mono headset  
Wired and Wireless USB VoIP phone with LCD  
USB VoIP ATA and Gateway  
PSTN and USB VoIP dual phone  
General USB MCU and audio application  
7
Rev1.2  
W681308  
3.  
Pin Configuration  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VREF1  
VREF2  
MCP  
1
2
GPIO14/UARTT(nTRST)  
GPIO13/UARTR(TMS)  
3
DGND  
MCO  
4
XTALO  
XTALI  
W681308  
48 Pin  
LQFP  
RGND  
5
6
VDDL  
DVDD  
AGND  
SPP  
7
DN  
DP  
EARP  
8
9
AVDD  
EARN  
SPN  
DGND  
10  
11  
12  
GPIO3/LED  
GPIO0(TCK)  
AGND  
Figure 1 Pin diagram  
8
Rev1.2  
 
W681308  
4.  
Pin Description  
Please refer to Design Guide for product design details.  
Driver  
Pin  
No  
State in  
Reset  
Pin Name  
Functionality  
Pin Type  
Strength  
UARTT  
/nTRST  
/GPIO 14  
UART TX data / JTAG TAP controller reset input  
/GPIO 14  
1
2
Pull-H  
Pull-H  
D
D
I/O  
2 mA  
UARTR  
/TMS  
UART Rx data / JTAG TMS input / GPIO 13  
I/O  
2 mA  
/GPIO 13  
DGND  
XTALO  
XTALI  
3
4
Digital ground supply voltage  
Crystal clock output  
D
A
A
D
D
A
A
D
D
D
P
O
5
Crystal clock input  
I
VDDL  
6
Logic supply voltage  
P
DVDD  
7
Digital supply voltage  
P
DN  
8
USB D- connection  
I/O  
I/O  
P
DP  
9
USB D+ connection  
DGND  
10  
11  
12  
Digital ground supply voltage  
LED connection / GPIO 3  
JTAG Clock with internal pull up / GPIO 0  
LED/GPIO 3  
TCK/GPIO 0  
Pull-H  
Pull-H  
I/O  
I/O  
16 mA  
16 mA  
Chip select (used for SPI flash or normal SPI) /GPIO  
11  
CS/GPIO 11  
13  
14  
Pull-H  
Pull-L  
D
D
I/O  
I/O  
2 mA  
2 mA  
Serial port bit clock ( For SPI flash or normal SPI)  
/GPIO 10  
SCLK/GPIO 10  
SDI/GPIO 9  
SDO/GPIO 8  
CSL/GPIO 12  
FS/GPIO 7  
15  
16  
17  
18  
19  
20  
21  
22  
Pull-L  
Pull-H  
Pull-H  
Pull-L  
Pull-L  
Pull-L  
Pull-L  
Pull-H  
Serial port data in (SPI flash/ SPI) /GPIO 9  
Serial port data out (SPI flash/ SPI) /GPIO 8  
LCD, LCM chip select /GPIO 12  
D
D
D
D
D
D
D
D
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2 mA  
2 mA  
2 mA  
2 mA  
2 mA  
2 mA  
2 mA  
2 mA  
PCM Frame Sync output /GPIO 7  
PCM Bit Clock output or input / GPIO 6  
Serial PCM Receive data input / GPIO 4  
Serial PCM Transmit data output / GPIO 5  
JTAG Data Input / GPIO 1  
BCLK/GPIO 6  
PCMR/GPIO 4  
PCMT/GPIO 5  
TDI/GPIO 1  
9
Rev1.2  
 
W681308  
Driver  
Pin  
No  
State in  
Reset  
Pin Name  
Functionality  
JTAG Data Output / GPIO 2  
Pin Type  
Strength  
TDO/GPIO 2  
VPP  
23  
24  
Pull-L  
D
A
I/O  
2 mA  
Reset signal for digital core. Tie this pin to 6.75V for  
programming the OTP ROM  
P
AGND  
SPN  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
Analog ground supply voltage  
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
P
O
Speaker1 negative connection  
Speaker2 negative connection  
Analog supply voltage  
EARN  
O
AVDD  
P
EARP  
Speaker2 positive connection  
O
SPP  
Speaker1 positive connection  
O
AGND  
Analog ground supply voltage  
P
RGND  
Low noise ADC and DAC reference  
The microphone amplifier output  
Microphone positive connection  
Voltage reference  
P
MCO  
G
MCP  
O
VREF2  
O
VREF1  
Voltage reference  
O
REGL  
Linear regulator base control output  
Keypad row Y4 connection /GPIO 24  
Keypad row Y3 connection /GPIO 23  
Keypad row Y2 connection /GPIO 22  
Keypad row Y1 connection /GPIO 21  
Keypad row Y0 connection /GPIO 20  
Keypad column X4 connection /GPIO 19  
Keypad column X3 connection /GPIO 18  
Keypad column X2 connection /GPIO 17  
Keypad column X1 connection /GPIO 16  
Keypad column X0 connection /GPIO 15  
O
KY4/GPIO 24  
KY3/GPIO 23  
KY2/GPIO 22  
KY1/GPIO 21  
KY0/GPIO 20  
KX4/GPIO 19  
KX3/GPIO 18  
KX2/GPIO 17  
KX1/GPIO 16  
KX0/GPIO 15  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-L  
Pull-L  
Pull-L  
Pull-L  
Pull-L  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2 mA  
2 mA  
2 mA  
2 mA  
2 mA  
2 mA  
2 mA  
2 mA  
2 mA  
2 mA  
Tie to DGND for normal operation. Tie to DVDD to  
enable JTAG function.  
JTAG  
48  
Pull-L  
D
I
2 mA  
Table 1 Pin Description  
NOTE: All GPIO pins modes are controlled by register settings.  
10  
Rev1.2  
 
W681308  
5.  
Block Diagram  
Figure 2 W681308 Function Block Diagram  
There are 4 major function block groups in the USB Audio Controller:  
ƒ
ƒ
ƒ
ƒ
Turbo 8051 MCU, registers, OTP/RAM memory and peripheral ports  
16-bit audio quality CODEC with AEC/AGC  
USB 2.0 FS interface with SIE, Full Speed PHY and 6 end points  
SPI / UART / I2C / PCM / I2S and GPIO interfaces.  
11  
Rev1.2  
 
W681308  
6.  
Memory Map  
6.1  
Program Memory map  
Memory is mapped into program memory and data memory. Program memory is mapped from 0x0000 to 0x1FFF (8 KB), it  
is used by internal OTP.  
6.2  
Data Memory map  
Size (Byte)  
Data memory address  
Function  
Total  
Available  
4
0x1440 ~ 0x1443  
0x144A ~ 0x145F  
0x1460 ~ 0x146F  
0x1470 ~ 0x1474  
0x1480 ~ 0x148A  
0x14A0 ~ 0x14AF  
0x14B0 ~ 0x14BA  
0x14C0 ~ 0x14C5  
0x1600 ~ 0x167F  
0x1680 ~ 0x16FF  
0x1800 ~ 0x19FF  
0x2000 ~ 0x23FF  
0x2800 ~ 0x2FFF  
0x3000 ~ 0x33FF  
4
22  
Interrupt Control Registers  
20  
16  
Keypad IO, LCD, UART and GPIO Control Registers  
Gain stage and Mixer Control Registers  
PCM Control Registers  
16  
16  
5
16  
11  
CODEC Control Registers  
16  
15  
SPI Control Registers  
16  
11  
W2S Control Registers  
16  
5
Ring Tone(PWM) Control Registers  
Full/Half Duplex AEC Control Registers  
AGC Control Registers  
128  
128  
512  
1024  
2048  
1024  
120  
16  
57  
USB Control Registers  
1024  
2048  
1024  
USB RAM Based Descriptor Field  
Full Duplex AEC RAM  
System RAM  
12  
Rev1.2  
 
W681308  
7.  
The registers are mapped by function.  
7.1 MCU Clock Rate Select Register  
Registers  
Value At  
Function  
Reset  
Address  
0x1440  
Name  
Mode  
R/W  
MCU Rate Select  
0x00  
MCU system clock rate selection  
7.2  
Interrupt Control Registers  
Value At  
Reset  
Address  
0x1441  
Name  
Mode  
Function  
Interrupt Source  
Interrupt Enable  
Interrupt Priority  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
Enable / Disable Interrupt source  
Enable / Disable Interrupt function  
Set Interrupt priority  
0x1442  
0x1443  
7.3  
Keypad IO, LCD, UART and GPIO Control Registers  
Value At  
Reset  
Address  
Name  
Mode  
R/W  
Function  
0x144A~  
0x144B  
GPIO [14:0] Pull  
Up/Down Control  
0x00  
Enable/Disable GPIO [14:0] Pull Up/Down  
Keypad I/O (GPIO  
[24:15]) and GPIO  
[14:0] Pull Up/Down  
Selection  
0x144C~  
0x144F  
Select Pull Up/Down for Keypad I/O (GPIO [24:15]) and  
GPIO [14:0]  
R/W  
0x00  
Keypad I/O(GPIO  
[24:15]) and GPIO  
[14:0] Status  
0x1450~  
0x1453  
Indicate Keypad I/O(GPIO [24:15]) and GPIO [14:0] pin  
status  
R/W  
R/W  
0x00  
0x00  
Keypad I/O(GPIO  
[24:15]) and GPIO  
[14:0 Direction Control  
0x1454~  
0x1457  
Select Keypad I/O(GPIO [24:15]) and GPIO [14:0]  
Input/Output Direction  
Keypad I/O(GPIO  
[24:15]) and GPIO  
[14:0] Interrupt control  
0x1458~  
0x145B  
Enable/Disable Keypad I/O(GPIO [24:15]) and GPIO  
[14:0] Interrupt  
R/W  
0x00  
Enable/Disable LCD data, clock and chip selection  
control.  
0x145E  
0x145F  
LCD Control  
R/W  
R/W  
0x00  
0x00  
UART I/O Control  
Enable/Disable UART I/O control.  
13  
Rev1.2  
 
W681308  
7.4  
Gain Stage and Mixer Control Registers  
Value At  
Function  
Reset  
Address  
Name  
Mode  
Enable/Disable Gain Stage for Side tone Gain, CODEC  
Gain Stage and Mixer  
Control  
to AEC Gain, AEC to CODEC Gain, AEC to Mixer Gain,  
Mixer to AEC Gain and USB in/USB out Gain. Select  
0x1460  
R/W  
0x00  
Mixer mode for USB, CODEC and PCM.  
Set Audio Gain Index Register Value (Side tone Gain,  
0x1461~  
0x1467  
CODEC to AEC Gain, AEC to CODEC Gain, AEC to  
Mixer Gain, Mixer to AEC Gain, USB in and USB out  
Gain Stage Index  
R/W  
0x00  
Gain)  
0x1468~  
0x146B  
0x146C~  
0x146F  
MCU Record  
MCU Play  
R
0x00  
0x00  
Enable/Disable MCU to monitor USB ISO In/Out data  
Enable/Disable MCU write data to USB and CODEC  
R/W  
7.5  
PCM Control Registers  
Name  
Value At  
Reset  
Address  
Mode  
R/W  
R/W  
Function  
Enable/Disable PCM Interface and Bit Clock / Frame  
Sync selection  
0x1470  
0x1472  
PCM Control  
0x00  
0x00  
PCM Frame Sync  
Length  
Set Frame Sync pulse length  
7.6  
CODEC Control Registers  
Value At  
Reset  
Address  
0x1480  
0x1481  
Name  
CODEC control  
Dither Control  
Mode  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Function  
Enable/Disable CODEC, Select Sampling Rate and  
High Pass Frequency  
0x00  
0x00  
Enable/Disable Dither Function  
0x1482~  
0x1483  
0x1484~  
0x1485  
CODEC ADC Digital  
Gain  
CODEC DAC Digital  
Gain  
0x04 0x00  
Set Digital ADC Path Gain  
0x04  
0x00  
Set Digital DAC Path Gain  
0x1488  
0x1489  
CODEC MIC Control  
CODEC MIC Control  
0x00  
0x00  
0x00  
0x00  
Set microphone bias voltage and bias resistor reference  
Select MIC interface mode and Set microphone gain  
CODEC Speaker  
Control  
CODEC Analog  
Control  
Attenuate speaker phone/ earphone speaker and Set  
speaker gain  
0x148A  
0x148B  
Enable/Disable CODEC Analog Block  
14  
Rev1.2  
 
W681308  
7.7  
SPI Control Registers  
Value At  
Function  
Reset  
Address  
0x14A0  
Name  
Clock  
Interface  
Command  
Interface Control  
Mode  
R/W  
R/W  
RW  
R/W  
RW  
RW  
RW  
R
SPI  
and  
Enable/Disable SPI interface and Select SPI bit clock  
rate  
0x00  
SPI  
Set SPI interface command length, R/W and other  
control  
0x14A1  
0x14A2  
0x14A3  
0x00  
SPI Data Length  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Set SPI interface data field length  
SPI Interrupt Control  
Enable/Disable SPI interface interrupt  
Set SPI interface command byte 1 to 5  
Set SPI interface clock format  
0x14A4~  
0x14A8  
SPI Command Byte  
Control  
SPI Clock Format  
Control  
0x14AB  
0x14AC  
0x14AD  
0x14AE  
0x14AF  
SPI FIFO Data  
SPI Byte Count  
SPI Write Count  
SPI Read Count  
Read/write data from SPI interface FIFO  
Current SPI interface FIFO counter value  
MCU current Write point for SPI interface FIFO  
MCU current Read point for SPI interface FIFO  
R/W  
R/W  
7.8  
W2S Control Registers  
Value At  
Reset  
Address  
Name  
W2S Enable  
Mode  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Function  
0x14B0  
0x14B1  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Enable/Disable W2S bus controller  
Set different page mode and page size of EEPROM  
Set W2S bit clock rate  
EEPROM control  
0x14B2~  
0x14B3  
W2S Clock  
0x14B4  
0x14B5  
0x14B6  
0x14B7  
0x14B8  
0x14B9  
0x14BA  
W2S R/W FIFO  
Read/Write W2S compatible device  
Set W2S Read/Write and FIFO control  
Indicate W2S FIFO space and ACK signal status  
Indicate W2S FIFO read pointer  
Indicate W2S FIFO write pointer  
W2S R/W Operation  
Control  
W2S Status  
FIFO Read Pointer  
FIFO Write Pointer  
ACK Failure Detect  
Set ACK failure detect and indicate failure data pointer  
in FIFO  
Indicate status for SCL_in, finite state machine state  
and interrupt signal status  
W2S  
Miscellaneous  
Control  
15  
Rev1.2  
 
W681308  
7.9  
Ring Tone (PWM) Control Registers  
Value At  
Function  
Reset  
Address  
Name  
PWM Clock  
Mode  
R/W  
R/W  
R/W  
R/W  
R/W  
0x14C0  
0x14C2  
0x14C3  
0x14C4  
0x14C5  
0x00  
0x00  
0x00  
0x00  
0x00  
Enable/Disable PWM Operation Clock  
Set Tone 1 Volume  
PWM Tone1 Control  
PWM Tone1  
Frequency  
Set Tone 1 Frequency  
Set Tone 2 Volume  
PWM Tone2 Control  
PWM Tone2  
Frequency  
Set Tone 2 Frequency  
7.10  
Full/Half Duplex Acoustic Echo Cancellation (AEC) Control Registers  
Value At  
Reset  
Address  
0x1600  
0x1601  
0x1602  
Name  
Mode  
R/W  
R/W  
R/W  
Function  
AEC Configuration  
AEC Reset Control  
AEC Mode Control  
0x96  
Set AEC Configuration parameters  
Set AEC power down and reset function  
Set AEC Full/Half duplex mode and Noise suppressor  
0x08  
0x03  
Double Talk Long  
Term Power Time  
Constant  
Double Talk Short  
Term Power Time  
Constant  
Set time constant for long term power estimation of  
double talk  
0x1605  
0x1606  
R/W  
R/W  
0x09  
0x0B  
Set time constant for short term power estimation of  
double talk  
0x1607~  
0x1608  
0x1609~  
0x160A  
Double Talk Hangover  
Time  
Double Talk Deviation  
Threshold  
Set hangover time window of double talk detection  
algorithm  
R/W  
R/W  
0x0020  
0x19A8  
Set deviation power threshold of double talk  
Double Talk Long  
Term Power  
Threshold  
0x160B~  
0x161C  
Set power threshold for long term power estimation of  
double talk  
R/W  
0x0000  
Double Talk Short  
Term Power  
Threshold  
AEC Divergence  
Threshold  
Voice Detect Long  
Term Power Time  
Constant  
0X160D~  
0x160E  
Set power threshold for short term power estimation of  
double talk  
R/W  
R
0x1010  
0x0F  
0X160F  
0x1610  
Set AEC Divergence threshold  
Set time constant for long term power estimation of  
Voice Detect  
R/W  
0x09  
Voice Detect Short  
Term Power Time  
Constant  
Voice Detect  
Hangover Time  
Set time constant for short term power estimation of  
Voice Detect  
0x1611  
R/W  
R/W  
0x0B  
0x1612~  
0x1613  
Set hangover time window of Voice Detect detection  
algorithm  
0x0009  
16  
Rev1.2  
 
W681308  
Value At  
Function  
Reset  
Address  
Name  
Mode  
R/W  
0x1614~  
0x1615  
Voice Detect Deviation  
Threshold  
0x1998  
Set deviation power threshold of Voice Detect  
Voice Detect Long  
Term Power  
Threshold  
Voice Detect Short  
Term Power Low  
Threshold  
Voice Detect Short  
Term Power High  
Threshold  
0x1616~  
0x1617  
Set power threshold for long term power estimation of  
Voice Detect  
R/W  
R/W  
R/W  
R/W  
0x1998  
0x1618~  
0x1619  
Set  
Low power threshold for short term power  
0x0BA8  
0x1038  
0x0000  
estimation of Voice Detect  
0X161A~  
0X161B  
Set  
high power threshold for short term power  
estimation of Voice Detect  
Voice Detect Short  
Term Power Average  
Threshold  
0X161C~  
0X161D  
Set average power threshold for short term power  
estimation of Voice Detect  
0X161E~  
0X161F  
0x1620~  
0x1621  
0x1622~  
0x1623  
Power Cut Off Control  
AGC Threshold  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x1998  
0x2000  
0x0320  
0x02  
Set zero reference bias for power cut off estimation  
Set maximum output power of AGC  
AGC Noise Threshold  
AGC Gain from AEC  
Set AGC calculated input power with time constant  
Set maximum gain for post echo cancellation signal  
Set delay time constant for long term gain estimation  
Set delay time constant for short term gain estimation  
Enable/Disable soft clip(SC) function  
0x1624  
0x1625  
0x1626  
0x1628  
0x1629  
0x162A  
AGC Gain Time  
constant  
AGC Gain Time  
constant  
0xBB  
0x09  
Soft Clip Control  
0x00  
Soft Clip Normal Gain  
Index  
Soft Clip Low Gain  
Index  
Set gain index of voice detect for soft clip module at  
normal gain mode  
Set gain index of voice detect for soft clip module at low  
gain mode  
0x00  
0x00  
0x162B~  
0x162C  
Soft Clip Threshold  
0x1000  
0x07  
Set threshold level to select soft clip gain mode  
Soft Clip Power Time  
Constant  
Soft Clip Gain Time  
Constant  
Acoustic Suppression  
1 Time Constant  
Acoustic Suppression  
1 attenuation  
Acoustic Suppression  
2 Time Constant  
Acoustic Suppression  
2 attenuation  
Noise Suppressor  
Control  
Noise Suppressor  
Set time constant for short term power calculation of  
voice detect soft clip  
Set time constant to smooth gain mode change of soft  
clip  
Set time constant of acoustic suppression (AS1) for  
convergence towards target  
Set maximum attenuation value for acoustic  
suppression (AS1) algorithm  
Set time constant of acoustic suppression (AS2) for  
convergence towards target  
Set maximum attenuation value for acoustic  
suppression (AS2) algorithm  
Set noise suppressor gain index and short term power  
time constant  
Set time constant for rise and fall of noise suppressor  
gain index  
0x162D  
0x162E  
0x1630  
0x07  
0x77  
0x1631-  
0x1632  
0x1CA8  
0x77  
0x1633  
0x1634~  
0x1635  
0x1CA8  
0xBB  
0xBB  
0x1638  
0x1639  
Gain Time Constant  
17  
Rev1.2  
W681308  
Value At  
Function  
Reset  
Address  
Name  
Mode  
R/W  
Noise Suppressor  
Active Power  
Threshold  
0x163A~  
0X163B  
0x03E8  
Set threshold level for active noise suppressor  
0x1640~  
0x1641  
0x1642~  
0x1643  
0x1644~  
0x1645  
0x1648~  
0x1649  
0x164A~0x  
164B  
0x164C~0x  
164D  
Short Term Power  
voice detector  
Long Term Power  
Voice Detector  
Voice Detector Power  
Deviation  
Short Term Power  
Double Talk  
Long Term Power  
Double Talk  
Double Talk Power  
Deviation  
Indicate Short Term Power calculated by the voice  
detector (VD).  
Indicate Long Term Power calculated by the voice  
detector (VD).  
Indicate Power Deviation estimated by the voice  
detector (VD).  
Indicate Short Term Power calculated by double-talk  
detector (DT).  
Indicate Long Term Power calculated by double-talk  
detector (DT).  
Indicate Power Deviation estimated by the double-talk  
detector (DT).  
R
R
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x00  
R
R
R
R
0x1680  
0x1681  
0x1682  
0x1683  
0x1684  
0x1685  
AGC Control  
R/W  
R/W  
R/W  
R/W  
R
Enable / Disable AGC and Set max gain control  
Enable/Disable AGC initial gain setting  
Set decreasing and increasing gain time for AGC  
Set release time for AGC peak voice level  
Indicate AGC gain status  
AGC Initial Gain  
Control  
0x00  
AGC Gain Time  
0x00  
AGC Peak Release  
Time  
0x00  
AGC Gain Monitor  
0x00  
AGC Gain Region  
Monitor  
Indicate AGC gain status at increasing, target or  
decreasing region.  
R
0x00  
0x1687~  
0x1689  
0x168A~0x  
168B  
0x168C~0x  
168D  
0x168E~0x  
168F  
AGC Short Term  
Power  
R
0x0000  
0x0000  
0x0000  
0x0000  
Indicate AGC Short Term Power estimation  
Set AGC target region threshold  
AGC Target Threshold  
R/W  
R/W  
R/W  
AGC Noise Low  
Threshold  
AGC Noise High  
Threshold  
Set AGC Noise low threshold level  
Set AGC Noise high threshold level  
7.11  
USB Controller Registers  
Value At  
Reset  
Address  
Name  
Mode  
R/W  
R/W  
R/W  
Function  
0x1800  
USB Enable  
0x00  
0x00  
0x00  
Enable/Disable USB 1.1 function control  
0x1801~  
0x1803  
USB Interrupt Register  
A
Set USB endpoints interrupt enable, status and clear.  
Set USB endpoints interrupt enable, status and clear.  
0x1804 ~  
0x1806  
USB Interrupt Register  
B
18  
Rev1.2  
 
W681308  
Value At  
Function  
Reset  
Address  
Name  
Mode  
R/W  
R/W  
0x1807 ~  
0x1809  
USB Interrupt Register  
C
0x00  
0x00  
Set USB Audio Class interrupt enable, status and clear.  
Set USB Control in/out Endpoint control  
Endpoint 0 – Control  
In/Out  
0x1810  
Control in Endpoint Data. Internal FIFO has 1 byte for  
Control In transmission. If the 3rd Token byte is not equal  
to 0x01 or 0x03 (HID set report application), this byte will  
be transmitted instead of Control-IN FIFO and Interrupt-  
IN FIFO content.  
0x1811  
Control In Data  
R/W  
0x00  
0x1828 ~  
0x182F  
Control Out Data  
R
R/W  
R
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Control Out Endpoint receiving data.  
Set ISO In/Out Endpoint control register.  
Indicate ISO Sampling Frequency  
Indicate Current Record Volume  
Indicate Current Play Volume  
Endpoint 1 and 2 –  
ISO In/Out  
0x1830  
0x1831  
Sampling Frequency  
Record Volume  
Play Volume  
0x1832-  
0x1833  
R
0x1834-  
0x1835  
R
HID Control Out  
Information  
0x1836  
0x1837  
0x1838  
0x1839  
R
Indicate First Packet and Valid Length  
Indicate Audio Path Max Volume Gain  
Set HID Token 3rd byte  
Max Volume  
R
HID Token Information  
HID Descriptor Length  
ISO SYNC Speed  
R/W  
R/W  
R/W  
R/W  
W
This register value must be equal to the USB descriptor  
with respect to the HID return length  
0x1840 ~  
0x1847  
Set ISO SYNC speed tuning parameter register.  
Set Bulk In Endpoint control register  
Endpoint 3 – Bulk In  
Control Register  
0x1848  
0x1849  
0x184A  
0x184B  
0x1850  
Bulk In Data  
Set Bulk In transmission data register except final data.  
Set Bulk In transmission final data register.  
Indicate Bulk In transmission data FIFO empty flag.  
Set Bulk Out Endpoint control register  
Bulk In Final Data  
W
Bulk In FIFO Empty  
Flag  
R
Endpoint 4 – Bulk Out  
Control Register  
R/W  
19  
Rev1.2  
W681308  
Value At  
Function  
Reset  
Address  
0x1851  
0x1852  
0x1858  
0x1859  
0x1880  
0x1881  
0x1882  
Name  
Mode  
R
Bulk Out FIFO Length  
Bulk Out Data  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Indicate Bulk Out Endpoint receiving data FIFO length.  
Bulk Out Endpoint receiving data FIFO.  
Set Interrupt In Endpoint control register  
Interrupt In Endpoint transmission data length  
Enable ISO IN/OUT FIFO access by MCU  
ISO OUT FIFO depth indication  
R
Endpoint 5 – Interrupt  
In Control Register  
R/W  
R/W  
R/W  
R
USB Interrupt Data  
Length  
USB ISO MCU Enable  
USB ISO IN FIFO  
Depth  
USB ISO OUT FIFO  
Depth  
R
ISO IN FIFO depth indication  
0x1883~  
0x1884  
USB ISO IN DATA  
R/W  
R
ISO IN data sample will be written by MCU  
ISO IN data sample will be read by MCU  
USB Descriptor  
0x1885~  
0x1886  
USB ISO OUT DATA  
0x2000-  
0x21FF  
USB Descriptor RAM  
data filed  
R/W  
R/W  
R/W  
R/W  
0x2200-  
0x223F  
HID Control-IN data  
field  
HID Control-IN data field  
0x2240-  
0x227F  
HID Interrupt-IN data  
field  
HID Interrupt-IN data field  
0x2300-  
0x233F  
HID Control-OUT data  
field  
HID Control-OUT data field  
20  
Rev1.2  
W681308  
8.  
8.1  
Microcontroller  
Features  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
8-bit Turbo 8051 Microcontroller with 12/24/48 MHz speed  
256 bytes of on chip internal data RAM and 1K bytes external data RAM  
Instruction set compatible with Nuvoton Turbo 8051  
Three 8-bit I/O ports  
Three 16-bit timers  
One Full-duplex serial port  
On-Chip debugger via JTAG (Joint Test Access Group) port  
7 interrupt sources with two level priorities  
Programmable Watchdog Timer  
Two 16-bit data pointers  
On Chip 8 KB OTP (One time programmable) memory  
8.2  
Memory Organization  
8.2.1  
Program Memory  
On-chip 8k OTP Memory:  
All instructions are fetched for execution from this memory area. The MOVC instruction can also access this memory region.  
8.2.2  
Data Memory  
The MCU can access 1K bytes of external Data Memory. This memory region is accessed by the MOVX instruction.  
Additionally it has 256 bytes on chip RAM which can be accessed either by direct addressing or by indirect addressing.  
Some Special Function Registers (SFRs) can only be accessed by direct addressing.  
F F  
1 F F F  
Indirect RAM  
Addressing  
SFRs Direct  
Addressing only  
8K Byte  
OPT Internal  
ROM  
8 0  
7 F  
Direct&Indirect  
Addressing  
33 F F  
3 0 0 0  
1K Byte  
RAM  
0 0  
0 0 0 0  
21  
Rev1.2  
 
W681308  
8.2.3  
Special Function Registers (SFR)  
Address  
Byte 0  
EIP  
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Byte 5  
Byte 6  
Byte 7  
F8  
F0  
E8  
E0  
D8  
D0  
C8  
C0  
B8  
B0  
A8  
A0  
98  
90  
88  
80  
B
EIE  
ACC  
WDCON  
PSW  
T2CON  
T2MOD  
SADEN  
RCAP2L  
RCAP2H  
TL2  
TH2  
PMR  
STATUS  
TA  
IP  
P3  
IE  
SADDR  
XRAMAH  
SBUF  
P2  
SCON  
P1  
TCON  
P0  
TMOD  
SP  
TL0  
TL1  
TH0  
TH1  
CKCON  
DPS  
DPL  
DPH  
DPL1  
DPH1  
PCON  
Table 2 W681308 MCU SFR location  
8.3  
Power Management  
The W681308 has IDLE mode operation features that manage and save power consumption of the device.  
Enable IDLE mode  
The user can set the device into idle mode by writing 1 to the PCON bit of SFR. The instruction that sets the idle bit is the last  
instruction that will be executed before the device goes into Idle Mode. In the Idle mode, the clock to the MCU is halted but  
not to the Interrupt, Timer, Watchdog timer, and Serial ports blocks. This forces the MCU state to be frozen; the Program  
counter, the Stack Pointer, the Program Status Word, the Accumulator and the other registers hold their contents. The ALE  
and PSEN pins are held high during the idle state. The port pins hold the logical states they had at the time Idle was  
activated.  
The Idle mode can be terminated in two ways:  
ƒ
Activation of any enabled interrupt  
Since the interrupt controller is still active, the activation of any enabled interrupt can wake up the processor. This will  
automatically clear the Idle bit, terminate the Idle mode, and the Interrupt Service Routine (ISR) will be executed. After the  
ISR, execution of the program will continue from the instruction which put the device into idle mode.  
22  
Rev1.2  
 
W681308  
ƒ
Activation of reset  
The Idle mode can also be exited by activating the reset. The device can be put into reset either by applying a high on the  
external RST pin, a Power on reset condition or a Watchdog timer reset. The external reset pin has to be held high for at  
least two machine cycles i.e. 8 clock periods to be recognized as a valid reset. In the reset condition the program counter is  
reset to 0000h and all the SFRs are set to the reset condition. Since the clock is already running there is no delay and  
execution starts immediately. In Idle mode, the Watchdog timer continues to run, and if enabled, a time-out will cause a  
watchdog timer interrupt which will wake up the device. The software must reset the Watchdog timer in order to preempt the  
reset which will occur after 512 clock periods of the time-out. When the W681308 is exiting from an idle mode with a reset,  
the instruction following the one which put the device into idle mode is not executed. So there is no danger of unexpected  
writes.  
8.4  
There are two ways to put device into reset state: external reset and watchdog reset.  
8.4.1 External Reset  
Reset Conditions  
The device continuously samples the RST pin at state C4 of every machine cycle. Therefore the RST pin must be held for at  
least 2 machine cycles to ensure detection of a valid RST high. The reset circuitry then synchronously applies the internal  
reset signal. Thus the reset is synchronous operation and requires the clock to be running to cause an external reset. Once  
the device is in reset condition, it will remain so long as RST is 1. Even after RST is deactivated, the device will continue to  
be in reset state for up to two machine cycles, and then begin program execution from 0000h.  
8.4.2  
Watchdog Reset  
The Watchdog timer is a free-running timer with programmable time-out intervals. The user can clear the watchdog timer at  
any time, causing it to restart the count. When the time-out interval is reached an interrupt flag is set. If the Watchdog reset is  
enabled and the watchdog timer is not cleared, then 512 clocks from the flag being set, the watchdog timer will generate a  
reset. This places the device into the reset condition. The reset condition is maintained by hardware for two machine cycles.  
Once the reset is removed the device will begin execution from 0000h.  
8.5  
Interrupts  
The W681308 MCU has three priority levels interrupt structure with 7 interrupt sources. Each of the interrupt sources has an  
individual priority bit, flag, interrupt vector and enable bit. Additionally, all the interrupts can be globally enabled or disabled.  
Source  
Flag  
IE0  
Priority  
Vector address  
0003h  
External Interrupt 0  
Timer 0 Overflow  
External Interrupt 1  
Timer 1 Overflow  
Serial Port  
1 (highest)  
TF0  
2
000Bh  
IE1  
3
0013h  
TF1  
4
001Bh  
RI + TI  
TF2 + EXF2  
WDIF  
5
6
0023h  
Timer 2 Overflow  
Watchdog Timer  
002Bh  
7 (lowest)  
0063h  
Table 3 Interrupt Priority Structure  
23  
Rev1.2  
 
W681308  
8.6  
Programming Timers and Counters  
The MCU of W681308 has three 16-bit programmable timers/counters and one programmable Watchdog timer. The  
Watchdog timer is operationally quite different from the other three timers.  
8.6.1  
Timers/Counters 0 and 1  
Timer 0 (TM0) and Timer 1 (TM1) are 16-bit Timer/Counters and are nearly identical. Each of these Timers/Counters has two  
8 bit registers which form the 16 bit counting register. For Timer/Counter 0 they are TH0, the upper 8 bits register, and TL0,  
the lower 8 bit register. Similarly Timer/Counter 1 has two 8 bit registers, TH1 and TL1. The two timers can be configured to  
operate either as timers to count machine cycles or as counters counting external inputs.  
In Timer mode, the timer counts clock cycles. The timer clock can be programmed to be thought of as 1/12 of the system  
clock or 1/4 of the system clock.  
In Counter mode, the register is incremented on the falling edge of the corresponding external input pins, T0 for Timer 0 and  
T1 for Timer 1. The T0 and T1 inputs are sampled in every machine cycle at C4. If the sampled value is high in one machine  
cycle and low in the next, then a valid high to low transition on the pin is recognized and the count register is incremented.  
Since it takes two machine cycles to recognize a negative transition on the pin, the minimum period at which counting will  
take place is double of the machine cycle.  
In either the Timer or Counter mode, the count register will be updated at C3. Therefore, in the Timer mode, the recognized  
negative transition on pin T0 and T1 can cause the count register value to be updated only in the machine cycle following the  
one in which the negative edge was detected.  
The Timer or Counter function is selected by the C/T bit in the TMOD Special Function Register. Each Timer/Counter has  
one selection bit for its own. Bit 2 of TMOD selects the function for Timer/Counter 0 and bit 6 of TMOD selects the function  
for Timer/Counter 1.  
89H  
TMOD  
88H  
Bit 7  
GATE  
Bit 7  
Bit 6  
C/T  
Bit 5  
M1  
Bit 4  
M0  
Bit 3  
GATE  
Bit 3  
IE1  
Bit 2  
C/T  
Bit 2  
IT1  
Bit 1  
M1  
Bit 0  
M0  
Bit 6  
TR1  
Bit 5  
TF0  
Bit 4  
TR0  
Bit 1  
IE0  
Bit 0  
IT0  
TCON  
TF1  
Table 4 Timer Mode/Control TMOD/TCON SFR  
24  
Rev1.2  
 
W681308  
8.6.2  
Timer/Counter 2  
Timer/Counter 2 is a 16 bit up/down counter which is configured by the T2MOD register and controlled by the T2CON  
register. Timer/Counter 2 is equipped with a capture/reload capability. As with the Timer 0 and Timer 1 counters, they  
provide wide selection and control of the clock and selection of the operating modes. The clock source for Timer/ Counter 2  
can be selected for the crystal oscillator, which is divided by 12 or 4 ( C/T2 = 0). The clock is then enabled when TR2 is a 1,  
and disabled when TR2 is a 0.  
C9H  
Bit 7  
-
Bit 6  
-
Bit 5  
-
Bit 4  
-
Bit 3  
T2CR  
EXEN2  
Bit 2  
-
Bit 1  
-
Bit 0  
T2MOD  
T2CON  
DCEN  
CP/RL2  
TF2  
EXF2  
RCLK  
TCLK  
TR2  
C/T2  
Table 5 Timer 2 Mode/Control TMOD/TCON SFR  
8.6.3  
Watchdog Timer  
The Watchdog timer is a free-running timer that can be programmed by the user to serve as a system supervisor, a time-  
base generator or an event timer. It is basically a set of dividers that divide the system clock. The divider output is selectable  
and determines the time-out interval. When the time-out occurs the flag WDIF is set, which can cause an interrupt if enabled,  
and a system reset can also be caused if it is enabled. The interrupt will occur if the individual interrupt enable and the global  
enable are set. The interrupt and reset functions are independent of each other and may be used separately or together  
depending on the software employed.  
Fosc  
12/24/  
48MHz  
WD1,WD  
0
22  
0
Interru  
pt  
WDIF  
EWD(EIE.4  
00  
01  
10  
11  
)
23  
26  
24  
WTRF  
Time-out  
25  
512  
clock  
delay  
Res  
et  
27  
Enable Watchdog timer  
Reset  
Watchdog  
PWT(WDCON.  
reset  
EWT(WDCON.1)  
When used as a simple timer, the reset and interrupt functions are disabled. The timer will set the WDIF flag each time the  
timer completes the selected time interval. The WDIF flag is polled to detect a time-out and the RWT allows software to  
restart the timer. The Watchdog timer can also be used as a very long timer. The interrupt feature is enabled in this case.  
Every time the time-out occurs an interrupt will occur if the global interrupt enable EA is set.  
25  
Rev1.2  
 
W681308  
The main use of the Watchdog timer is as a system monitor. This is important in real-time control applications. In case of  
some power glitches or electro-magnetic interference, the processor may begin to execute errant code. If this is left  
unchecked the entire system may crash. Using the watchdog timer interrupt during software development will allow the user  
to select ideal watchdog reset locations. The code is first written without the watchdog interrupt or reset. Then the watchdog  
interrupt is enabled to identify code locations where interrupt occurs. The user can now insert instructions to reset the  
watchdog timer which will allow the code to run without any watchdog timer interrupts. Now the watchdog timer reset is  
enabled and the watchdog interrupt may be disabled. If any errant code is executed now, then the reset watchdog timer  
instructions will not be executed at the required instants and watchdog reset will occur.  
Watchdog  
Interval  
Number of  
Clocks  
WD1  
0
WD0  
0
Time@12MHz  
699.05 ms  
Time@24MHz  
349.53 ms  
Time@48MHz  
174.76 ms  
223  
225  
226  
228  
8388608  
33554462  
67108864  
268435456  
0
1
1
1
0
1
2796.20 ms  
5592.41 ms  
22369.62 ms  
1398.10 ms  
2796.20 ms  
11184.81 ms  
699.05 ms  
1398.10 ms  
5592.41 ms  
Table 6 Time-Out Values For Watchdog Timer  
The Watchdog timer will be disabled by a power-on/fail reset. The Watchdog timer reset does not disable the watchdog timer,  
but will restart it.  
NOTE: In general, software should restart the timer to put it into a known state.  
D8H  
Bit 7  
-
Bit 6  
POR  
Bit 5  
-
Bit 4  
-
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WDCON  
WDIF  
WTRF  
EWT  
RWT  
External  
Reset  
0
x
0
x
0
x
x
0
Table 7 Watchdog Control WDCON SFR  
Control Bit  
POR  
Name  
Function  
Hardware will set this flag on a power up condition. This flag can be read or written  
by software. A write by software is the only way to clear this bit once it is set.  
Power-on Reset Flag  
This bit is set by hardware to indicate that the time-out period has elapsed and  
invoke watch dog timer interrupt if enabled(EWDI=1). This bit must be cleared by  
software.  
Watchdog Timer  
Interrupt Flag  
WDIF  
Hardware will set this bit when the watchdog timer causes a reset. Software can  
read it but must clear it manually. A power-fail reset will also clear the bit. This bit  
helps software in determining the cause of a reset. If EWT = 0, the watchdog timer  
will have no affect on this bit.  
Watchdog Timer  
Reset Flag  
WTRF  
26  
Rev1.2  
 
W681308  
Control Bit  
EWT  
Name  
Function  
Enable Watchdog  
timer Reset  
Setting this bit will enable the Watchdog timer Reset function.  
This bit helps in putting the watchdog timer into a know state. It also helps in  
resetting the watchdog timer before a time-out occurs. Failing to set the EWT before  
time-out will cause an interrupt, if EWDI (EIE.4) is set, and 512 clocks after that a  
watchdog timer reset will be generated if EWT is set. This bit is self-clearing.  
Reset Watchdog  
Timer  
RWT  
Table 8 Watchdog Control Bits  
WTRF is set to a 1 on a Watchdog timer reset, set to 0 on power on/down resets. WTRF is not altered by an external reset.  
POR is set to 1 by a power-on reset. EWT is cleared to 0 on a Power-on reset and unaffected by other resets.  
To prevent software from accidentally enabling or disabling the watch dog reset function, the bit of WDCON requires Time  
Access (TA) procedure to write.  
Example:  
mov TA, #0AAH  
mov TA, #055H  
clr WDIF  
WD1, WD0 are Time-out bits for Watchdog Timer located at CKCON.7 and CKCON.6. These bits determine the time-out  
period of the watchdog timer. The reset time-out period is 512 clocks longer than the watchdog time-out.  
WD1  
WD0  
Interrupt time-out  
Reset time-out  
223 + 512  
0
0
1
1
0
1
0
1
223  
225  
226  
228  
225 + 512  
226 + 512  
228 + 512  
Table 9 Watchdog Timer Timeout Control  
27  
Rev1.2  
 
W681308  
8.7  
Serial Port (UART)  
The MCU serial port is a full-duplex port, and the MCU provides additional features, such as Frame Error Detection and  
Automatic Address Recognition. The serial port is capable of synchronous and asynchronous communication. In  
synchronous mode, the MCU generates the clock and operates in half-duplex mode. In asynchronous mode, the serial port  
can simultaneously transmit and receive data. The transmit register and the receive buffer are both addressed as SBUF, but  
any write to SBUF writes to the transmit register while any read from SBUF reads from the receive buffer. The serial port can  
operate in four modes: MOD 0, MOD 1, MOD 2 and MOD 3.  
98H  
Bit 7  
Bit 6  
SM1  
Bit 5  
SM2  
Bit 4  
REN  
Bit 3  
TB8  
Bit 2  
RB8  
Bit 1  
TI  
Bit 0  
RI  
SCON  
SM0/FE  
Table 10 Serial Control SCON SFR  
8.8  
The W681308 internal OTP ROM is designed to store all application firmware.  
8kB One-Time Programmable Logic Device  
OTP ROM  
ƒ
The OTP programming is done by the injection of hot electrons which are generated by avalanche impact ionization in the bit  
cell. User can enter JTAG mode to program 8k OTP ROM through JTAG interface pins and signal of PCMT pin will go high  
simultaneously. The signal of pin PCMT can be used to control external hardware device to apply 6.75V or 3.3V to  
programming voltage pin VPP. The cells are initialized by ultraviolet light through internal photoemission from the floating  
gate.  
ƒ
Enable OTP Read Protection  
You can write zero to bit 7 of OTP address 0x1fff to turn on the read protection feature.  
28  
Rev1.2  
 
W681308  
9.  
9.1  
Clock Control and Reset  
Clock Control  
9.1.1  
Overview  
Each register in the 12/24/48 MHz USB Audio Controller is reset synchronously. The Reset and Clock Control function  
ensures that the system reset signal is correctly generated. The system reset signal is also used to ensure that bi-directional  
signals are all set to input during initialization.  
9.1.2  
Clock Generation  
The crystal oscillator circuit and the external attachment of a 12 MHz quartz crystal or ceramic resonator is shown below.  
The Rf is used to DC bias the internal amplifier to operate in the linear region. The R1, C1, and C2 are chosen so as not to  
overdrive the crystal and to suppress oscillation at higher harmonics. Rf = 1M, R1=270, C1 and C2 are to be 33pf each.  
XTAL_IN  
XTAL_OUT  
R1  
Rf  
External  
Crystal  
C2  
C1  
The PLL block diagram is shown below. The PLL uses the output of the crystal oscillator as its reference clock and generate  
a 48 MHz clock.  
29  
Rev1.2  
 
W681308  
9.1.3  
Control Register  
MCU Rate Select  
Address  
0x1440  
Access Mode  
R/W  
Value At Reset  
0x00  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Reserved  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MCU Rate Select [7:6]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
MCU Rate Select [7:6]  
MCU Clock Rate select (default = 00 )  
00 = 12 MHz , Use for CODEC/AEC/USB Controller  
01 = 24 MHz  
10 = 48 MHz , Use for MCU/USB PHY/Peripherals  
11 = Reserved  
30  
Rev1.2  
 
W681308  
10.  
10.1  
Interrupt Control  
Overview  
The W681308 generates internal events, these interrupt events are triggered by the interrupt control logic. The MCU  
supports two priority levels of interrupts with 6 interrupt sources.  
10.2  
Functionality  
The External Interrupts INT0 and INT1 can be either edge triggered or level triggered,  
The Interface and Support logic generate the following interrupts:  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
NFS interrupt  
Keypad-Wakeup Interrupt  
GPIO interrupt  
SPI interrupt  
W2S interrupt  
USB interrupt  
Three registers control the generation of interrupts in the W681308, the interrupt source register, the interrupt enable register  
and the interrupt priority register. Each interrupt has a corresponding bit in these three registers.  
The interrupt source register is set when an interrupt event occurs and is cleared by MCU.  
When the MCU writes to interrupt source, any bit that is set to 1 cause the corresponding bit of interrupt source to be cleared,  
bits set to 0 are not affected (write “one” to clear).  
An Interrupt is generated when (interrupt source) & (interrupt enable) =1 for any of the interrupt sources. For each bit; if  
interrupt priority = 0, the interrupt is issued to INT0, if interrupt priority = 1, the interrupt is issued to INT1.  
Interrupt  
Source  
&
INT0  
&
Interrupt  
Enable  
INT1  
&
Interrupt  
Priority  
Figure 3 Interrupt Structure  
31  
Rev1.2  
 
W681308  
10.3  
Interrupt Control Registers  
Address  
0x1441 ~ 0x1443  
Access Mode  
R/W  
Value At Reset  
0x00  
Address  
0x1441  
Bit 7  
Bit 6  
W2S  
Bit 5  
SPI Interrupt  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Keypad-  
USB  
Interrupt  
GPIO  
Interrupt  
Wakeup NFS Interrupt Reserved  
Interrupt  
Reserved  
Interrupt  
NOTE: The NFS interrupt occurs for every 8 CODEC frames.  
Interrupt Source Register  
(0x1441)  
Interrupt Enable Register  
(0x1442)  
Interrupt Priority Register  
(0x1443)  
Read: 1 = Interrupt 0 = No Interrupt  
Write: 1 = Clear  
1 = Enable  
0 = Disable  
0 = INT0  
1 = INT1  
32  
Rev1.2  
 
W681308  
11.  
Interface Logic  
The W681308 Interface logic consists of:  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Keypad Scanner Interface  
Input/Output GPIO Ports  
LCD/LCM interface  
UART interface  
JTAG Interface  
PCM Interface  
SPI for Serial Data Flash  
W2S Interface  
Keypad scanner, GPIO, LCD/LCM and UART interfaces are covered in this section.  
11.1  
Software Keypad Scanner  
The keypads consist of a number of buttons, connected in a row/column arrangement as shown in  
Figure 4 The default pin KX[4:0] is pull-L and pin KY[4:0] is pull-H, User can follow below steps to scan the keypad by  
software:  
1. Program KX[4:0] pin to output direction and output data 0. Program KY[4:0] pins to input direction.  
2. While key is pressed, MCU will be informed by GPIO interrupt then to check KX[4:0] and KY[4:0] status.  
3. KX[4:0] keep output data 0, then to read KY[4:0] status by register 0x1451[4:0], By reading  
can know which bit equal 0, allowing it to determine which row is pressed.  
KY[4:0] status, MCU  
4. Change pin KY[4:0] from input direction to output direction and output data 1. Change pin KX[4:0] from output  
direction to input direction then to read KX[4:0] status by register 0x1450[4:0]. By reading KX[4:0] status, MCU can  
know which bit equal 1, allowing it to determine which column is pressed.  
5. MCU knows which row and column are pressed, so it can determine which key is pressed.  
S1  
S2  
S3  
S4  
S5  
KY[0]  
KY[1]  
KY[2]  
KY[3]  
KY[4]  
S6  
S7  
S8  
S9  
S10  
S15  
S20  
S25  
S11  
S16  
S21  
S12  
S17  
S22  
S13  
S18  
S23  
S14  
S19  
S24  
KX[0]  
KX[1]  
KX[2]  
KX[3]  
KX[4]  
Figure 4 Keypad Scanning Application Circuit  
33  
Rev1.2  
 
W681308  
11.2  
GPIO s  
W681308 has 25 GPIO pins that are mainly used for keypad scanner, LCM controller, SPI, W2S, PCM interface, UART port,  
JTAG interface and GPIO s.  
NOTE: The pin function for LED, CS, SCLK, SDI, SDO and CSL will act as different functions according to the setting of  
LCD_ENB (0x145E), SPI_ENB (0x14A0), RDY_ENB(0x14AB) and W2S_ENB(0x14B0).  
Address  
0x145E[3]  
0x14A0[7]  
0x14AB[5]  
0x14B0[7]  
Name  
Values  
LCD_ENB  
SPI_ENB  
RDY_ENB  
W2S_ENB  
0
0
0
0
1
0
0
0
1
1
0
0
0
1
0
0
0
1
1
0
0
0
0
1
Functions  
Pin Number  
Pin Name  
0x145E[2:0]  
for LCD driver  
Control  
SPI for LCD  
driver  
SPI for  
data flash  
GPIO  
ISD15000  
W2S  
11  
13  
14  
15  
16  
17  
LED  
CS  
GPIO 3  
GPIO 11  
GPIO 10  
GPIO 9  
GPIO 8  
GPIO 12  
GPIO 03  
GPIO 11  
GPIO 3  
SPI_CS  
SPI_CLK  
GPIO 9  
GPIO 3  
SPI_CS  
SPI_RDY  
SPI_CS  
GPIO 3  
GPIO 11  
W2S_SCL  
GPIO 9  
LCD_CKN  
(0x145E[B1])  
SCLK  
SDI  
SPI_CLK  
SPI_SDI  
SPI_SDO  
GPIO 12  
SPI_CLK  
SPI_SDI  
SPI_SDO  
GPIO 12  
GPIO 09  
LCD_TX  
(0x145E[B0])  
LCD_CSN  
SDO  
CSL  
SPI_DO  
Pull High  
W2S_SDA  
GPIO 12  
(0x145E[B2])  
34  
Rev1.2  
 
W681308  
11.3  
LCD Control  
Address  
0x145E  
Access Mode  
R/W  
Value At Reset  
0x00  
Bit 7  
Bit 6  
Reserved  
Bit 5  
Bit 4  
Reserved  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
Reserved  
LCD_ENB  
LCD_CSN  
LCD_CKN  
LCD_TX  
LCD_TX  
LCD Write Out Data  
LCD Write Out Clock  
LCD Write Out Chip Select Enable (active low)  
LCD I/O Enable Control : 1 = Enable, 0 = Disable  
Set this bit to enable LCD control interface :  
Pin 17 CSL = LCD_CSN  
LCD_CKN  
LCD_CSN  
LCD_ENB  
Pin 14 SCLK = LCD_CKN  
Pin 16 SDO = LCD_TX  
11.4  
UART I/O Control  
Address  
Access Mode  
R/W  
Value At Reset  
0x00  
0x145F  
Bit 7  
Bit 6  
Reserved  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
UART IO ENB  
UART IO ENB  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UART I/O Enable Control, 1 = Enable, 0 = Disable  
35  
Rev1.2  
 
W681308  
12.  
12.1  
PCM Interface , Gain Stage and Mixer  
PCM Interface  
The PCM module is a 16-bit parallel/serial data transfer interface. It transfers the 16 bits data from Gain-Stage/Mixer to single  
bit Output, and transfers the one bit signal data of Input pin to 16 bits data buffer to the Gain-Stage / Mixer. In normal  
operation, the FS and BCLK are generated from the analog PLL module.  
PCM Interface specification:  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Master Mode Only  
Support TX / RX path mute  
8 PCM Bit Clock frequency : 128K, 256K, 512K, 768K, 1M, 1.536M, 2M, 4M Hz.  
3 frequency selection of the PCM Frame Sync (FS) : 8K, 16K and 48K Hz.  
16 bit length selection of the PCM Frame Sync (FS) : 1~ 16 bits.  
4 selection of PCM FS/DATA location + 1 half bit clock delay.  
PCM_FS & PCM_BCLK inverse mode for I2S interface.  
12.2  
Gain stage  
There are 6 programmable gain stages for transmit and receive path. These gain stages are implemented to provide a range  
of +24 dB to –31.5 dB with 0.5 dB per step. The Figure 5 is shown the location of these digital gain stages. There are 2 side  
tone paths to select from: One before AEC block, one after AEC block. Side tone gain stage is from -0.5dB to -31.5dB with  
0.5dB step.  
Figure 5 PCM Interface, Gain Stage and Mixer Location  
36  
Rev1.2  
 
W681308  
12.3  
Mixer  
The mixer provides flexible connections among CODEC block, PCM interface and USB block. We will describe each  
connection case of mixer modes and how to configure them below.  
12.4  
Connection Case Example  
Figure 6 Mixer Connection Case Examples  
Case 0: Link CODEC and USB  
Case 1: Link CODEC and PCM  
37  
Rev1.2  
 
W681308  
Case 2: Link PCM and USB  
Case 3: Link All  
12.5  
38  
Rev1.2  
W681308  
Mixer Case Examples with Register Setting  
Figure 7 Mixer Examples with Registers Setting  
Case 0: Default  
Register Setting:  
0x1460 = 0x80 (Enable Gain Stage, Link CODEC_USB)  
0x1470 = 0x00 (Disable PCM)  
Case 1: Record Conversation  
Register Setting:  
0x1460 = 0x83 (Enable Gain Stage, Link All)  
0x1470 = 0x80 (Enable PCM)  
0x1474 = 0x02 (Mute PCM_RX)  
39  
Rev1.2  
 
W681308  
Case 2: Record Greeting  
Register Setting:  
0x1460 = 0x80 (Enable Gain Stage, Link CODEC_USB)  
0x1470 = 0x80 (Enable PCM)  
0x1474 = 0x02 (Mute PCM_RX)  
Case 3: Record Message  
Register Setting:  
0x1460 = 0xF0 (Enable Gain Stage, Link CODEC_USB, Record_USB)  
0x1470 = 0x80 (Enable PCM)  
0x1474 = 0x02 (Mute PCM_RX)  
40  
Rev1.2  
W681308  
Case 4: Play conversation 1  
Register Setting:  
0x1460 = 0x83 (Enable Gain Stage, Link All)  
0x1470 = 0x80 (Enable PCM)  
0x1474 = 0x04 (Mute PCM_TX)  
Case 5: Play Conversation 2  
Register Setting:  
0x1460 = 0x83 (Enable Gain Stage, Link All)  
0x1470 = 0x80 (Enable PCM)  
0x1474 = 0x04 (Mute PCM_TX)  
0x1464 = 0x40 (Mute CODEC A/D IN)  
0x1467 = 0x40 (Mute USB ISO OUT)  
41  
Rev1.2  
W681308  
Case 6: Pro-X FXS  
Register Setting:  
0x1460 = 0x81 (Enable Gain Stage, Link PCM_USB)  
0x1470 = 0x80 (Enable PCM)  
0x1465 = 0x40 (Mute CODEC D/A OUT)  
12.6  
I2S Register Setting Example  
The following example will generate I2S interface format from the W681308 PCM interface.  
I2S for 48KHz Sampling Rate(SR) with 16bits LPCM :  
0x1470 = 85  
0x1470 [2:0]  
101 = BCLK Rate Select. SR x 32 bits = 48K x 32 = 1.536MHz ( L,  
R channels are 16 bits format)  
00 = FST Location, Frame Sync is occurred before the MSB of the  
PCM data.  
0x1470 [4:3]  
0x1470 [7]  
0x1472  
1 = Enable PCM Interface  
F0 = For long frame  
0x1474  
40 = PCM bit clock inverse enable  
42  
Rev1.2  
 
W681308  
13.  
13.1  
Audio Codec Interface  
Overview  
The audio CODEC interface allows the USB Audio Controller Device to be connected to one or more of the following:  
ƒ
ƒ
ƒ
ƒ
16 bit internal linear PCM CODEC and Echo Cancellation block.  
8/16/48 KHz CODEC sampling rate  
An I2S interface to and from the on chip linear CODEC.  
A PCM interface to connect to a external Nuvoton ProX SLIC/CODEC  
The audio data is flowing between USB interface and CODEC through 2 segmented FIFOs that allow MCU processing of  
audio data.  
13.2  
Audio CODEC Signal Path  
Figure 8 W681308 CODEC Signal Path Control  
Transmit Path Operation  
The microphone is biased through pins MCP by an internal programmable voltage reference and programmable resistor. The  
microphone ac signal is gained up by the input amplifier and filtered to prevent aliasing at the input of the sigma delta ADC.  
The sigma delta ADC converts the signal in a 2 bit digital representation, which is decimated and low pass filtered to the  
base band sampling rate of 8kHz to 48kHz. A high pass filter can be enabled in the transmit path.  
43  
Rev1.2  
 
W681308  
The signal from the digital receive input is filtered through the acoustic echo cancellation filter and subtracted from the high  
pass filter output. The acoustic echo cancellation is only active in speaker phone operation with 8 kHz sampling. The result is  
then passed to the AGC with programmable time, release time and enable signal. The output of the AGC can be passed  
either to the PCM interface, the USB/MCU or both (recording a conversation).  
Receive Path Operation  
The PCM input can be obtained through a multiplexer from the PCM interface or the USB FIFO/MCU. The digital signal can  
then be gained or attenuated through a programmable digital gain stage. Then, the side tone from the transmit side is added  
through a programmable side tone gain stage. The side tone is disabled when the speakerphone is active.  
The digital signal is then passed through a high pass filter with programmable enable. The output of the high pass filter goes  
through the interpolation smoothing filter, which produces a 4 bit binary to 15 bit thermometer digital representation for the  
sigma delta DAC. The output of the DAC goes through an analog smoothing filter. The output of the smoothing filter can be  
hooked up to the speaker phone speaker driver, the earphone speaker driver or both.  
A programmable attenuation switch is used to switch between the earphone driver and the speaker phone driver. At power  
up of the analog section, the slow ramp on pin VREF1 is used to control the ramp up of the speaker and earphone driver in  
order to avoid ‘POP’ sounds. During operation, the user should lower the volume of the speaker using the software volume  
control settings, before switching the speaker and earphone driver in order to reduce the ‘POP’ sounds.;  
Alternatively, a buzzer can be used on the speakerphone driver outputs, using a 200Hz- 32 kHz PWM signal. However, the  
speakerphone can not be used in that case.  
Digital CODEC  
The digital CODEC filter chain is so designed that it can handle 48K, 16K and 8K rate through its rate change filters.  
13.3  
Microphone Interface and Auxiliary Interface  
W681308 integrates a fully programmable microphone interface. No external components other than the microphone are  
required to operate the circuit. The microphone interface can operate in three modes:  
ƒ
ƒ
ƒ
Voltage gain mode  
Current gain mode  
Auxiliary input mode  
For the Current gain mode an internal or external resistor can be selected to determine the gain. The Auxiliary input mode  
should be used with external resistors. However, an internal gain resistor can be selected. The interface modes above can  
be selected with register MIC_MODE [2:0] at address 0x1489.  
ƒ
Voltage Gain Mode  
The basic operation is shown below in  
Figure 9. The microphone is connected to the pins MCP and RGND. It is important that the negative terminal of the  
microphone is routed separately to the RGND pin for ‘pseudo differential’ operation, reducing the background noise amplified  
by the microphone amplifier. This can be enforced in the PCB layout by placing a 0 Ohm resistor or a ferrite bead. The pin  
MCO is connected to the output of the microphone amplifier and can be used for monitoring the AC level. The voltage gain is  
set by register MIC_GAIN[7:4] at address 0x1489. This register provides a gain range from 14dB to 38dB. The gain is set by  
a ratio of internal resistors, providing accurate gain control. The pin MCP also supplies the bias reference for the microphone.  
The bias consists of a programmable resistor and a programmable voltage reference. The programmable resistor is set by  
register MIC_RES[7:4] at address 0x1488 and can be set to open and 670 Ohm to 10kOhm. The programmable voltage  
reference is set by register MIC_BIAS[2:0] at address 0x1488 and can be set from 1.22Volt to 2.74Volt.  
44  
Rev1.2  
 
W681308  
MIC_BIAS[2:0]  
0x1488  
W681308  
Voltage Gain Mode  
0x1489  
MIC_MODE=‘000’  
MIC_RES[7:4]  
0x1488  
MCP  
+
-
To ADC  
Electret  
Microphone  
MIC_GAIN[7:4]  
0x1489  
RINT1  
RINT2  
MIC_GAIN[7:4]  
0x1489  
MCO  
250 Ohm  
V
V
ADC  
MCP  
R
INT 1  
RGND  
=1+  
Rm  
0 Ohm  
Or ferrite  
RINT 2  
'000'  
Figure 9 Microphone Voltage Gain Mode  
ƒ
Current Gain Mode  
For higher gain configurations, the current gain mode can be used as in  
Figure 10 below.  
MIC_BIAS[2:0]  
0x1488  
W681308  
Current Gain Mode  
0x1489  
MIC_MODE=‘010’or ‘011’  
MIC_RES[7:4]  
0x1488  
MCP  
IS  
+
-
To ADC  
Electret  
Microphone  
IS  
MIC_GAIN[7:4]  
0x1489  
Rinternal  
0x1489  
RINT  
MCO  
250 Ohm  
V
I
ADC  
= −(REXT+ 250)  
= RINT  
S
'011'  
'010'  
V
I
ADC  
RGND  
S
Rm  
0 Ohm  
Or ferrite  
R
EXT > 20k  
Figure 10 Microphone Current Gain Mode  
45  
Rev1.2  
 
W681308  
The current gain mode uses the same programmable microphone bias voltage and resistor as the voltage gain mode. The  
gain is set by either the internal gain resistor or an external resistor, depending on the MIC_MODE setting. Since the current  
gain mode is using a single resistor, the gain accuracy is limited. However, large gain can be achieved. Note that a 250Ohm  
ESD protection resistor is connected to the MCO pin. This resistor should be considered when calculating the gain.  
ƒ
Auxiliary Input Mode  
For non-microphone applications one or more Auxiliary inputs can be connected to the MCP pin as shown in  
Figure 11 below. The MIC_RES register should be set to open in order to disconnect the microphone bias. For the gain  
setting it is advised to use external gain resistors only for optimal matching and accuracy. The 250Ohm ESD protection  
resistor should be considered again when calculating the gain. Note that for this mode the RGND pin is tied to the external  
supply ground. A clean ground reference should be used for this.  
MIC_BIAS[2:0]  
0x1488  
W681308  
Auxiliary Input Mode  
0x1489  
MIC_MODE[2:0]=‘101’  
MIC_RES[7:4]  
0x1488  
=‘0100’  
Cs1  
Csn  
Rs1  
MCP  
+
-
To ADC  
+
Vs  
-
MIC_GAIN[7:4]  
0x1489  
Rsn  
+
Vsn  
-
Rinternal  
0x1489  
MCO  
V
ADC  
R
EXT+ 250  
250 Ohm  
= −  
V
S
R
S
'101'  
R
EXT > 20k  
RGND  
1
C
S
=
40πR  
S
Figure 11 Microphone Auxiliary Input Mode  
46  
Rev1.2  
 
W681308  
14.  
14.1  
Serial Peripheral Interface  
Overview  
W681308 built in a serial peripheral interface (SPI) port which is a 4-pin (SCLK, CS, SDI, SDO) SPI Interface. This SPI  
interface makes W681308 an easy to control 4-pin SPI device including SPI data flash, SPI LCM, Nuvoton Pro-X SLIC  
CODEC etc. This device has various clock speed and data format by setting relative control registers. The SPI module can  
be operated at clock rates of up to MCU clock rate.  
Figure 12 SPI Block Diagram  
14.2  
Data and Signal Format of SPI  
There are 5 control bits (CSN_ADD, CSN_MORE, CK_MORE, CP and CI) to decide the SPI control signal format. Register  
0x14AB has detail description of the control bits.  
The packet and page data format is separated to 2 fields: Command field and the Data field. Command field (0 ~ 5 bytes)  
consists of control instruction/code and access address (TX only). Data field (0 ~ 256 bytes) consists of write and read data  
of serial data flash (TX/RX). All Command and Data bytes are send MSB first. Command and Data field length can be  
programmed in CMD_LEN (0x14A1[2:0]) and DATA_LEN (0x14A2[7:0]) register fields. It can be bypassed to write control bit  
CMD_BYPASS or disable the DATA_ENB. The max command field length is 5 bytes. The max data field length is 256 bytes  
in unidirectional mode, and 128 bytes in bidirectional mode. Thirteen examples are provided for reference.  
14.3  
FSM of SPI  
There are 3 states in the SPI Finite State Machine (FSM) module. The initial state is IDLE when power on.  
IDLE  
ƒ
After enable the SPI function (write 0x14A0[7] =1), the FSM start to wait for MCU control (write 0x14A1) to change to next  
state. If the CMD BYPASS flag (0x14A1[5]) is true, the FSM will change to DATA state, then force control logic to shift in/out  
the data bytes sequentially. If the CMD BYPASS flag ( 0x14A1[5]) is false, the FSM will change to the CMD state, then force  
control logic to shift out the command bytes sequentially to external SPI device.  
ƒ
Command (CMD)  
47  
Rev1.2  
 
W681308  
After finished shift out the command bytes, the FSM will change to DATA state if the Data_enb ( 0x14A1[4]) is true, or run  
back to IDLE state if the Data_enb is false.  
ƒ
Data  
When FSM goes into Data state, the control logic start to shift out write data to external SPI device if SPI_RD (0x14A1[3]) is  
false, or shift in read data from external SPI device if SPI_RD (0x14A1[3]) is true. In bidirection mode, the control logic will  
ignore SPI_RD (0x14A1[3]) and start to shift in/out the read/write data from/to external SPI device. After finishing shift out/in  
the data bytes, the FSM will go back to IDLE state and wait for next transition.  
IDLE  
DATA  
CMD  
14.4  
FIFO and RAM of SPI  
The SPI module takes up to 5 bytes Register to write the control command and takes the 256x8 bytes RAM to do the  
Read/Write access FIFO. In Bidirectional mode, the 256x8 bytes RAM will separate into two 128x8 bytes sections. One  
(ADDR: 0x00~7F) for keep the transmit data, and the other one (ADDR: 0x80~0xFF) for store the receive data. Once the  
Bidirectional mode is enabled, the SPI module will automatic put receive data from ADDR: 0x80 instead of the ADDR: 0x00  
as in the unidirectional mode. It supports two memory access methods:  
ƒ
FIFO like method  
MCU always read/write the same register (0x14AC) with hardware control the memory read/write address, and increase the  
read/write pointer automatically after each read/write. The current write and read pointer can be read at register 0x14AE and  
0x14AF.  
ƒ
Direct access method  
MCU can read/write any byte of the memory after setting the read (0x14AF)/write (0x14AE) pointer first.  
14.5  
Interrupt Sources  
The SPI module supports two types of interrupt sources:  
TX/RX finish interrupt  
When TX/RX byte counts (0x14AD) = DATA_LEN.  
Middle flag interrupt  
ƒ
ƒ
When TX/RX byte counts (0x14AD) = 16 * INTR_CNT (0x14A3[7:4]).  
For any other options, refer to the description of the specific registers in W681308 Design Guide.  
48  
Rev1.2  
 
W681308  
15.  
15.1  
Nuvoton 2-Wire Serial Bus  
Overview  
Nuvoton 2-wire serial bus (W2S) is a simple bi-directional 2-wire bus for efficient inter-IC control. This design is for W2S  
master use only, and governed by the MCU. The W2S is used to both read/write EEPROM and to control various device  
included I2C interface. The W2S controller is equipped with 35 bytes FIFO performing formatting and de-formatting. The  
MCU can simply fill up the FIFO contents which consists of target device ID, high/low address (depend on the device format);  
for reading, just set read enable, for writing, keep writing data to FIFO then set write enable to launch transmission. The W2S  
controller supports 3 types of page writing, 8, 16 and 32 bytes. The W2S controller is designed to support maximum of 32  
bytes per page. The FIFO depth can support 3 header bytes (one device ID, two address) and 32 bytes data. It has various  
bus speed configurations to support wide range of EEPROM bus speed.  
16.  
16.1  
ICE Function By JTAG STD. IEEE 1149.1  
Overview  
The W681308 MCU on-chip debugger function follows the JTAG standard. It provides 8 sets of breakpoints. There is no  
watchpoint. There are five JTAG-style scan chains within the 8051 and peripheral logic, which enable embedded ICE logic.  
The 5 JTAG interface pins TCK (JTAG test clock input), TMS (JTAG test mode select), TDI (JTAG test data input), TDO  
(JTAG test data output) and nTRST (JTAG TAG controller reset) are needed to enable the operation. The JTAG interface  
pins are multiplexed with other function pins.  
16.2  
Scan Chains and JTAG Interface  
There are five JTAG-style scan chains within the TB51 core and peripheral logic interface. These enable debugging  
operation and configuration of Embedded-ICE logic. An external pull low signal on nTRST will reset TAP controller or MCU  
power-on reset will trigger TAP controller reset once.  
16.3  
Pin Description  
Table 11 JTAG Pin Description  
Pin Name  
Type  
Function  
TCK  
TMS  
TDI  
IN  
IN  
JTAG Test clock with internal pull-up.  
JTAG Test-Mode Select with internal pull-up.  
IN  
JTAG Test Data Input with internal pull-up. TDI is latched on a rising edge of TCK.  
JTAG Test Data Output. Data is shifted out on TDO at the rising edge of TCK. TDO  
output is a tri-state driver with internal weakly pull-low resister.  
TDO  
nTRST  
OUT  
IN  
JTAG TAP controller reset input with internal pull-up.  
49  
Rev1.2  
 
W681308  
16.4  
Reset Behavior  
TB51 will start to execute internal code after power on reset. If host JTAG ICE connects with TB51, the host ICE can send  
command to control the TB51.  
Reset type  
Functional description  
1. Reset MCU  
Power On Reset  
2. Reset JTAG. TAP controller will stay in Test-Logic Reset State.  
3. Execution starts from address 0000 after reset.  
1. Reset Chip.  
Reset by RESET pin or WDT  
2. Do not reset JTAG. TAP controller stays in the original state.  
RESET (including set Reset  
3. If the original TAP controller state is in run mode, chip reset  
out and Reset in SC0)  
4. If the original TAP controller state is in Halt mode. No any state changed  
nTRST Low  
1. No effect on MCU.  
2. Reset JTAG. TAP controller will stay in Test-Logic Reset state.  
17.  
17.1  
Ring Tone (PWM) Generator  
Overview  
The ring tone or PWM can generate dual frequency tones through on chip speaker driver. There are two tone signals can be  
mixed to the speakerphone driver output. This subsection describes the Ring Tone Generator with the PWM (Pulse Width  
Modulation) format.  
Ring tone generator (PWM) specification:  
ƒ
ƒ
ƒ
Tone Channel Number = 2  
Tone Volume Step = 32  
Tone Frequency Range = 91Hz~23KHz  
12M  
Frequency =  
Hz  
N =1~ 256  
16× N ×32  
The tone frequency/volume control signal path is shown as Figure 13.  
Figure 13 Ring Tone Generator Block  
50  
Rev1.2  
 
W681308  
18.  
FULL/HALF DUPLEX ACOUSTIC ECHO CANCELLATION(AEC)  
The AEC unit removes the echo signal caused by the speaker and room reflections.  
18.1  
Function Control Registers  
Figure 14 illustrates the block diagram of the Full/Half Acoustics Echo Cancellation  
Figure 14 Signal flow through Acoustic Echo Cancellation in the speech processor  
51  
Rev1.2  
 
W681308  
19.  
USB Device Controller And Transceiver  
Overview  
19.1  
The W681308 includes a full function USB 2.0 Full Speed controller. It supports USB 2.0 FS standard specification and  
standard USB audio device class and HID device class in Microsoft Windows environment. The USB core embeds one  
programmable 512x8 Bit RAM to store descriptor. In the setting, the USB core includes five interfaces and 6 endpoints to  
handle above applications.  
19.2  
Functional Description  
The USB function block diagram is shown below:  
uC  
ADDR_SEL  
Control  
Endpoint  
#0  
Descriptor RAM  
512x8  
REG  
CTRL  
Bulk-IN  
Endpoint  
#3  
TPRAM  
256x8  
CTL_IN/INT_IN/BULK_IN  
Bulk-OUT  
Endpoint  
#4  
TPRAM  
256x8  
CTL_OUT/BULK_OUT  
SIE  
UCOM  
Interrupt-IN  
Endpoint  
#5  
BIST  
ISO-IN  
Endpoint  
#1  
TPRAM  
128x16  
ISO-OUT  
Endpoint  
#2  
TPRAM  
128x16  
USB_TST  
ISO-SYNC  
Endpoint  
#6  
Figure 15 USB Function Block Diagram  
The USB module supports all transfer types (Control, Bulk In, Bulk Out, Interrupt In, Isochronous In, Isochronous Out and  
ISO-SYNC) in USB 1.1 spec and W681308 USB embeds 6 Endpoints include Control Endpoint 0. The default descriptors are  
stored in the programmable 512x8 Bit RAM. The SIE module is for handle USB series-interface-engine functions. UCOM  
52  
Rev1.2  
 
W681308  
module is a bridge to communicate SIE and all transfer type modules. Register Control module is for handle MCU read/write  
and data signals of W681308 USB registers. Gain Stage residing out off USB module is required for adjusts gain of PCM  
data in audio volume control application. USB test module connects many internal signals to test pins for help monitor them  
from outside.  
The features of USB interface are:  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
USB Specification version 2.0 Full Speed(FS) 12Mbps compliant  
Audio Class Interface and Command support (Volume Control, Mute Control, Sampling Rate selection)  
HID Class Interface and Command support (Set/Get Report)  
Programmable pull-up resistor to connect/disconnect 1.5Kohm on D+ bus  
Support five interfaces and 6 endpoints: Control, Isochronous IN/OUT, Bulk IN/OUT, and Interrupt IN.  
Ping-Pong FIFO control for Bulk IN/Bulk OUT transfer to increase data transmission efficiency.  
Provide three bytes Isochronous SYNC to synchronize Isochronous OUT with PC audio data stream and improve voice  
quality.  
19.2.1  
Endpoints  
The definitions of embedded endpoints are:  
Address  
Type  
Control  
ISO  
Direction  
IN/OUT  
IN  
maximum Packet Size (Bytes)  
Memory Type  
64x8 TPRAM  
128x16 TPRAM  
128x16 TPRAM  
128 x 8 TPRAM  
128 x 8 TPRAM  
64x8 TPRAM  
Registers  
0
1
64  
256  
256  
128  
128  
64  
2
ISO  
OUT  
IN  
3
Bulk  
4
Bulk  
OUT  
IN  
5
Interrupt  
ISO  
6*  
IN  
3
Table 12 W681308 USB Endpoint Definitions  
NOTE: TPRAM - Dual Ports RAM  
53  
Rev1.2  
 
W681308  
19.2.2  
Descriptor RAM  
The referenced descriptors are stored in the 512x8 Bit RAM, programmed by MCU. The address mapping and bank  
definition of this RAM are shown in 18-2.  
Address  
Function  
Device Descriptor  
Size  
0x2000~0x2011  
18 Bytes  
Configuration Descriptor  
Interface Descriptor  
Endpoint Descriptor  
Audio Class Descriptor  
HID Descriptor  
0x2012~0x217F  
366 Bytes  
0x2140~0x214F  
0x2150~0x215F  
0x2160~0x216F  
0x2170~0x217F  
0x2180~0x21FF  
String Descriptor Index 0  
String Descriptor Index 1  
String Descriptor Index 2  
String Descriptor Index 3  
Report Descriptor  
16 Bytes  
16 Bytes  
16 Bytes  
16 Bytes  
128 Bytes  
Table 13 USB Descriptor RAM Definitions  
54  
Rev1.2  
 
W681308  
20.  
Electrical Characteristics  
Absolute Maximum Ratings  
20.1  
CONDITION  
VALUE  
UNIT  
0C  
Junction temperature  
150  
Storage temperature range  
Lead temperature (soldering – 10 seconds)  
LQFP-48 Thermal Resistance, typical  
Voltage applied to any pin  
Input current applied to any digital input pin  
ESD (Human Body Model)  
VDD - VSS  
-65 to +150  
0C  
300  
0C  
76  
(VSS - 0.3 ) to (VDD + 0.3 )  
+/- 10  
C/W  
V
mA  
V
2000  
-0.5 to +3.63  
-0.5 to + 1.98  
0.5  
V
VDDL - VSS  
V
Power Dissipation  
Watt  
NOTE: Stresses above the value listed may cause permanent damage to the device. Exposure to absolute maximum ratings  
may affect device reliability. Functional operation is not implied at these conditions.  
20.2  
Recommended Operating Conditions  
CONDITION  
VALUE  
0 to +70  
UNIT  
0C  
Commercial operating temperature  
Industrial operating temperature  
-40 to +85  
+3.13 to +3.47  
0C  
Supply voltage (VDD) using external regulator  
V
Supply voltage (VDDUSB) using internal regulator  
and external transistors  
+4.4 to + 5.25  
0
V
V
Ground voltage (VSS  
)
55  
Rev1.2  
 
W681308  
20.3  
DC Characteristics  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
VIL  
VIH  
VT  
Input Low Voltage  
Input High Voltage  
Threshold point  
-0.3  
2
0.8  
3.6  
V
V
1.32  
1.49  
1.24  
1.41  
1.54  
1.29  
1.49  
1.58  
1.34  
± 10  
± 10  
83  
V
VT+  
VT-  
II  
Schmitt trigger. Low to High threshold point  
Schmitt trigger. high to low threshold point  
Input leakage current @VI=3.3V or 0V  
Tri-state output leakage current @VO=3.3V or 0V  
Pull-up resistor  
V
V
µA  
µA  
K
IOZ  
RPU  
RPD  
VOL  
VOH  
38  
25  
54  
49  
Pull-down resistor  
110  
0.4  
K
Output low voltage @IOL (min)  
V
Output high voltage @IOH (min)  
2.4  
2.2  
Low level output current @VOL=0.4V 2 mA  
Low level output current @VOL=0.4V 16 mA  
High level output current @VOH=2.4V 2 mA  
High level output current @VOH=2.4V 16 mA  
3.7  
29.8  
6.4  
5.3  
mA  
mA  
mA  
mA  
IOL  
IOH  
19.6  
3.2  
39.0  
10.6  
77.8  
23.1  
46.8  
20.4  
Analog Transmission Characteristics  
AVDD=3.13V – 3.47V; VSS=0V; TA=-40°C to +85°C; All ADC tests using Auxiliary input mode @ 0dB gain  
TRANSMIT (ADC) RECEIVE (DAC)  
PARAMETER  
SYMBOL  
CONDITION  
TYP  
UNIT  
MIN  
MAX  
MIN  
MAX  
ADC (single ended)  
DAC (differential)  
1.218  
2.436  
---  
---  
---  
---  
---  
---  
---  
---  
VPK  
VPK  
Full Scale Level  
Absolute Gain  
TXmaX  
-3dBFS @ 1020 Hz, AVDD  
=3.3V; TA=+25°C;  
GABS  
0
0
-0.40  
+0.40  
-0.40  
+0.40  
dB  
dB  
Absolute Gain  
variation with  
Temperature  
TA=0°C to TA=+70°C  
TA=-40°C to TA=+85°C  
-3dBFS  
-0.10  
-0.20  
+0.10  
+0.20  
-0.10  
-0.20  
+0.10  
+0.20  
GABST  
AVDD=3.13V – 3.47V; -  
3dBFS @ 1020 Hz;  
TA=+25°C  
Absolute Gain  
variation with  
Supply Voltage  
GABSS  
0
-0.10  
+0.10  
-0.10  
+0.10  
dB  
56  
Rev1.2  
 
W681308  
20.5  
Analog Distortion and Noise Parameters  
All ADC tests using Auxiliary input mode @ 0dB gain  
20.5.1  
8kHz sampling  
AVDD=3.13V – 3.47V; VSS=0V; TA=-40°C to +85°C; 8kHz sampling  
TRANSMIT (ADC)  
RECEIVE (DAC)  
PARAMETER  
SYMBOL  
CONDITION  
Idle channel  
UNIT  
MIN  
TYP  
94  
MAX  
MIN  
TYP  
88  
MAX  
Signal to Noise Ratio  
SNR  
THD3  
THD8  
80  
--  
--  
80  
--  
--  
dB  
dB  
dB  
A-weighted  
-3dBFS @ 1020 Hz,  
32Ohm speaker load  
Total Harmonic Distortion  
Total Harmonic Distortion  
-77  
-77  
-67  
-67  
-69  
-77  
-70  
-67  
-60  
-55  
-3dBFS @ 1020 Hz,  
8Ohm speaker load  
--  
--  
-6dBFS @ 1020 Hz,  
4Ohm speaker load  
Total Harmonic Distortion  
Frequency Response  
Power Supply Rejection  
THD4  
Frl  
--  
-79  
3.36  
88  
--  
-65  
3.36  
85  
dB  
kHz  
dB  
-3dB Low pass cut-off  
VDDUSB; 35mVrms DC  
to 3.4 kHz  
PSRRA  
70  
---  
70  
---  
A-weighted  
20.5.2  
16kHz sampling  
AVDD=3.13V – 3.47V; VSS=0V; TA=-40°C to +85°C; 16kHz sampling  
TRANSMIT (ADC)  
RECEIVE (DAC)  
PARAMETER  
SYMBOL  
CONDITION  
UNIT  
MIN  
TYP  
93  
MAX  
MIN  
TYP  
86  
MAX  
Idle channel  
A-weighted  
Signal to Noise Ratio  
SNR  
THD3  
THD8  
THD4  
Frl  
80  
--  
--  
80  
--  
--  
dB  
dB  
-3dBFS @ 1020 Hz,  
32Ohm speaker load  
Total Harmonic Distortion  
Total Harmonic Distortion  
Total Harmonic Distortion  
Frequency Response  
-76  
-76  
-79  
6.73  
89  
-66  
-66  
-69  
-78  
-70  
-65  
6.73  
85  
-68  
-60  
-55  
-3dBFS @ 1020 Hz,  
8Ohm speaker load  
--  
--  
dB  
-6dBFS @ 1020 Hz,  
4Ohm speaker load  
--  
--  
dB  
-3dB Low pass cut-off  
kHz  
dB  
VDDUSB; 35mVrms  
DC to 6.8 kHz  
A-weighted  
Power Supply Rejection  
PSRRA  
70  
---  
70  
---  
57  
Rev1.2  
 
W681308  
20.5.3  
48kHz sampling  
AVDD=3.13V – 3.47V; VSS=0V; TA=-40°C to +85°C; 48kHz sampling  
TRANSMIT (ADC)  
RECEIVE (DAC)  
PARAMETER  
SYMBOL  
SNR  
CONDITION  
Idle channel  
UNIT  
dB  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
Signal to Noise Ratio  
80  
--  
92  
--  
80  
--  
85  
--  
A-weighted  
Total Harmonic  
Distortion  
-3dBFS @ 1020 Hz,  
32Ohm speaker load  
THD3  
THD8  
THD4  
Frl  
-77  
-77  
-78  
20.2  
88  
-67  
-67  
-68  
-76  
-69  
-65  
20.2  
76  
-66  
-59  
-55  
dB  
Total Harmonic  
Distortion  
-3dBFS @ 1020 Hz,  
8Ohm speaker load  
--  
--  
dB  
Total Harmonic  
Distortion  
-6dBFS @ 1020 Hz,  
4Ohm speaker load  
--  
--  
dB  
Frequency Response  
-3dB Low pass cut-off  
kHz  
dB  
VDDUSB; 35mVrms  
DC to 6.8 kHz  
A-weighted  
Power Supply  
Rejection  
PSRRA  
70  
---  
66  
---  
20.6  
Programmable Output Linear Regulator  
TA=-40°C to +85°C; Using discrete components per application diagram;  
PARAMETER  
SYMBOL  
VDDUSB  
CONDITION  
MIN (2)  
TYP (1)  
MAX (2)  
UNIT  
Low Power Mode (100mA)  
High Power Mode (500mA)  
4.4  
5
5
5.25  
5.25  
V
V
Recommended USB Supply  
Voltage  
4.75  
Regulated Supply Voltage  
VDD  
No Load, Normal Operation  
Suspend Mode  
3.13  
--  
3.3  
3.47  
--  
V
Total Suspend Mode  
Current  
ISP  
463  
uA  
Including USB pull-up and discrete  
regulator  
Operating Supply Current  
Voltage Drop  
IVDD  
No Load, Normal Operation  
VDDUSB =5V, load=500mA  
VDDUSB =5V, load=1A  
--  
--  
--  
38  
--  
--  
--  
mA  
V
VDROP0.5  
0.006  
0.06  
Voltage Drop  
VDROP1  
V
NOTE 1: Typical values: TA = 25°C  
NOTE 2: All min/max limits are guaranteed by Nuvoton via electrical testing or characterization. Not all specifications are  
100 percent tested  
58  
Rev1.2  
 
W681308  
20.7  
USB PHY Electronic Characteristics ( 25°C, DVDD= 3.3V, VDDL =1.8V)  
PARAMETER  
SYMBOL  
CONDITION  
MIN.  
3.1  
TYP.  
3.3  
MAX.  
3.5  
UNIT  
V
DC Supply Voltage for USB Output Stage  
Input Voltage Range for USB_DP/DN  
VDD_USB  
USB_DP  
USB_DN  
0
3.5  
V
Input High  
VIH  
VIL  
2.0  
V
V
Input Low  
0.8  
Differential Input Sensitivity  
Differential Common-mode Range  
Single-end Receiver threshold  
Output Low  
VDI  
0.2  
0.8  
0.8  
V
VCM  
VSE  
VOL  
VOH  
VCRV  
RUP  
ZDRV  
CIN  
---  
2.5  
2.0  
0.3  
V
V
V
Output High  
2.8  
1.3  
1.3  
8
V
Output signal cross Voltage  
Pull-up Resistor  
2.0  
1.9  
19  
20  
20  
20  
110  
100  
2
V
1.61  
KΩ  
Driver Output Resistance  
Transceiver Capacitance  
Driver Rise Time  
pF  
ns  
ns  
%
nA  
mA  
mA  
CL = 50pF  
Rs=25 Ohms  
CEdge=30pF  
TR  
4
4
8
8
Driver Fall Time  
TF  
Rise and Fall Time matching  
TLRLF  
TLRLF = TLR/ TLF  
Standby  
90  
100  
VDD_USB Supply Current  
IUSB  
Input Mode  
Output Mode  
* (exclude internal pull high resistor)  
2
59  
Rev1.2  
 
W681308  
20.8  
USB PLL Electronic Characteristics  
PARAMETER  
SYMBOL  
VPLL  
CONDITIONS  
MIN.  
3.13  
TYP.  
3.3  
12  
48  
48  
56  
7
MAX.  
3.47  
UNIT  
V
Operation Voltage  
Input Clock Frequency Range  
PLL Output Frequency  
VCO Frequency  
FIN  
MHz  
MHz  
MHz  
%
FOUT  
FVCO  
---  
---  
Ouput Duty Cycle  
46  
66  
PLL Short-Term Peak To Peak Output Jitter  
PLL Lock In Time  
TJITTER  
TREADY  
ps  
25  
us  
60  
Rev1.2  
 
W681308  
21.  
Typical Application Reference Circuit  
S1  
S6  
S2  
S3  
S4  
S5  
1
2
5
8
0
3
Mode  
Up  
HangUp  
S7  
S8  
S9  
S10  
4
6
Down  
USB_5V  
S11  
S12  
S17  
S13  
S18  
S23  
S14  
S19  
S24  
S15  
7
9
Skype  
Left  
Down1  
Dial  
+
C1  
S16  
S20  
S25  
*
#
Right  
Mute  
R1  
1M  
R2  
R3  
1uF/10V  
PUSHBUTTON  
PUSHBUTTON  
100K  
60K  
S21  
S22  
User  
Melody  
Up1  
Q1  
1
MMBT3906  
DGND  
R4  
Q2  
VDD_3.3V  
PZT2222A  
300K  
Q3  
C2  
10nF  
R5  
MMBT3904  
100K  
C3  
R6  
2K  
DGND  
220uF/10V  
UARTT  
UARTR  
AGND  
AGND  
AGND  
C4  
R7  
DGND  
C5 100nF  
C6 100nF  
UARTT  
UARTR  
VREF1  
33pF  
270  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AGND  
AGND  
UARTT  
VREF1  
VREF2  
MCP  
VREF2  
MCP  
DY1  
12M  
R8  
UARTR  
DGND  
XTALO  
XTALI  
VDDL  
DVDD  
DN  
MIC1  
1M  
3
DGND  
1
2
XTALO  
XTALI  
MCO  
4
1
TP1  
MCO  
C7  
RGND  
5
W681308_LQFP  
DGND  
RGND  
AGND  
SPP  
C8  
33pF  
6
DGND  
AGND  
SPP  
10nF  
7
USB_5V  
VDD_3.3V  
U1  
REC1  
SPK1  
DN  
DP  
EARP  
8
EARP  
AVDD  
EARN  
SPN  
C9  
100nF  
9
VDD_3.3V  
DP  
USB Connector  
EARN  
SPN  
10  
11  
12  
DGND  
DGND  
GPIO3  
GPIO0  
GPIO3  
GPIO0  
1
VCC  
R9  
25  
DGND  
AGND  
2
C10  
100nF  
D-  
3
D+  
4
R10 25  
GND  
C11  
C12  
51pF  
C13  
C14  
C15  
R11  
D1  
VDD_3.3V  
VDD_3.3V  
DGND  
Shielding  
DJP1  
51pF  
30pF  
30pF  
AGND  
10nF  
100  
R12  
LED  
D2  
VDD_3.3V  
DGND  
DGND DGND  
DGND DGND  
C16  
The shielding of the  
USB connector can't  
connect to any GND.  
100  
LED  
100nF  
LCD Module (Serial Interface)  
AGND  
PCM interface is for  
External Audio Device or  
USB ATA wtih Pro-X  
DGND  
AGND  
VDD_3.3V  
C17  
100nF  
DGND  
Figure 16 W681308 Reference Design Application Circuit  
21.1  
USB VoIP speaker phone application  
The application diagram illustrated that the W681308 is a SOC with very low BOM system design. Externally it supports a  
variety interfaces such as keypad, LCM, SLIC, SPI flash/EEPROM, Microphone and speakers directly. External 12M Crystal  
as well as a 5V to 3.3V linear regulator is required. Ring tone download and playback is through the same Audio DAC path  
with a switch for ringing and speech.  
61  
Rev1.2  
 
W681308  
22.  
Package Dimensions  
W681308DG is in 48 pin Low-profile Quad Flat Package (LQFP).  
In inch  
nom  
-0.063  
In mm  
min nom max  
Symbol  
min  
-
max  
-
A
A1  
A2  
b
c
D
E
e
HD  
HE  
L
-
1.60  
0.002 0.004 0.006 0.05 0.10 0.15  
0.053 0.055 0.057 1.35 1.40 1.45  
0.005 0.008 0.010 0.15 0.20 0.20  
0.004 0.005 0.008 0.10 0.15 0.20  
0.272 0.276 0.280 6.90 7.00 7.10  
0.272 0.276 0.280 6.90 7.00 7.10  
0.014 0.020 0.025 0.35 0.50 0.65  
0.350 0.354 0.358 8.90 9.00 9.10  
0.350 0.354 0.358 8.90 9.00 9.10  
0.018 0.024 0.030 0.45 0.60 0.75  
L1  
Y
θ
-
-
-
0.039  
0.004  
7’  
-
-
0’  
-
-
-
1.00  
0.10  
7’  
-
0’  
62  
Rev1.2  
 
W681308  
23.  
Ordering Information  
Nuvoton Part Number Description  
W681308_ _  
Package Material:  
Pb-free Package  
Product Family  
G
=
Package Type:  
D
=
48-Lead Quad Flat Pack Package (LQFP)  
When ordering W681308series devices, please refer to the following part numbers:  
Temp  
Package  
Material  
Part Number  
Package  
Range (oC)  
-40 to 85  
W681308DG  
48-LQFP  
Pb-Free  
63  
Rev1.2  
 
W681308  
24. Revision History  
VERSION  
V0 9  
DATE  
PAGE  
DESCRIPTION  
July, 2007  
Preliminary Version  
V1.0  
V1.1  
August, 2007  
March, 2008  
Update Electrical Characteristics  
Update Speaker / Earphone attenuation switch  
Format of the datasheet changed  
Logo update  
V1.2  
March 2009  
Important Notice  
Nuvoton products are not designed, intended, authorized or warranted for use as components in  
systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control  
instruments, or for other applications intended to support or sustain life. Furthermore, Nuvoton  
products are not intended for applications wherein failure of Nuvoton products could result or lead to a  
situation wherein personal injury, death or severe property or environmental damage could occur.  
Nuvoton customers using or selling these products for use in such applications do so at their own risk  
and agree to fully indemnify Nuvoton for any damages resulting from such improper use or sales.  
64  
Rev1.2  
 

相关型号:

W681310

3V SINGLE-CHANNEL VOICEBAND CODEC
WINBOND

W681310ES

Single Channel CODEC Mini Evaluation Board
WINBOND

W681310R

3V SINGLE-CHANNEL VOICEBAND CODEC
WINBOND

W681310RG

3V SINGLE-CHANNEL VOICEBAND CODEC
WINBOND

W681310S

3V SINGLE-CHANNEL VOICEBAND CODEC
WINBOND

W681310SG

3V SINGLE-CHANNEL VOICEBAND CODEC
WINBOND

W681310W

3V SINGLE-CHANNEL VOICEBAND CODEC
WINBOND

W681310WG

3V SINGLE-CHANNEL VOICEBAND CODEC
WINBOND

W681310_07

3V SINGLE-CHANNEL VOICEBAND CODEC
WINBOND

W681360

3V SINGLE-CHANNEL 13-BIT LINEAR VOICE-BAND CODEC
WINBOND

W681360ES

KIT EVAL FOR W681360
ETC

W681360R

3V SINGLE-CHANNEL 13-BIT LINEAR VOICE-BAND CODEC
WINBOND